Computational Model Library

Change and Senescence

André Martins | Published Tue Nov 10 20:28:59 2020

Agers and non-agers agent compete over a spatial landscape. When two agents occupy the same grid, who will survive is decided by a random draw where chances of survival are proportional to fitness. Agents have offspring each time step who are born at a distance b from the parent agent and the offpring inherits their genetic fitness plus a random term. Genetic fitness decreases with time, representing environmental change but effective non-inheritable fitness can increase as animals learn and get bigger.

This model simulates different seeding strategies for information diffusion in a social network adjusted to a case study area in rural Zambia. It systematically evaluates different criteria for seed selection (centrality measures and hierarchy), number of seeds, and interaction effects between seed selection criteria and set size.

Spatial rangeland model

Marco Janssen | Published Tue Jan 22 01:51:09 2019 | Last modified Sat Oct 17 02:03:28 2020

Spatial explicit model of a rangeland system, based on Australian conditions, where grass, woody shrubs and fire compete fore resources. Overgrazing can cause the system to flip from a healthy state to an unproductive shrub state. With the model one can explore the consequences of different movement rules of the livestock on the resilience of the system.

The model is discussed in Introduction to Agent-Based Modeling by Marco Janssen. For more information see https://intro2abm.com/.

MTC_Model_Pilditch&Madsen

Toby Pilditch | Published Fri Oct 9 11:05:30 2020

Micro-targeted vs stochastic political campaigning agent-based model simulation. Written by Toby D. Pilditch (University of Oxford, University College London), in collaboration with Jens K. Madsen (University of Oxford, London School of Economics)

The purpose of the model is to explore the various impacts on voting intention among a population sample, when both stochastic (traditional) and Micto-targeted campaigns (MTCs) are in play. There are several stages of the model: initialization (setup), campaigning (active running protocols) and vote-casting (end of simulation). The campaigning stage consists of update cycles in which “voters” are targeted and “persuaded” - updating their beliefs in the campaign candidate / policies.

NetLogo model corresponding to the JASSS article “Agent-Based Simulation of West Asian Urban Dynamics: Impact of Refugees”

Peer reviewed B3GET

Kristin Crouse | Published Thu Nov 14 20:07:16 2019 | Last modified Tue Oct 6 20:13:54 2020

B3GET simulates populations of virtual organisms evolving over generations, whose evolutionary outcomes reflect the selection pressures of their environment. The model simulates several factors considered important in biology, including life history trade-offs, investment in fighting ability and aggression, sperm competition, infanticide, and competition over access to food and mates. Downloaded materials include a starting genotype and population files. Edit the these files and see what changes occur in the behavior of virtual populations!

HomininSpace

Fulco Scherjon | Published Fri Nov 25 12:00:02 2016 | Last modified Tue Oct 6 11:01:00 2020

A modelling system to simulate Neanderthal demography and distribution in a reconstructed Western Europe for the late Middle Paleolithic.

Sugarscape with spice

Marco Janssen | Published Tue Jan 14 17:09:12 2020 | Last modified Fri Sep 18 16:31:42 2020

This is a variation of the Sugarspace model of Axtell and Epstein (1996) with spice and trade of sugar and spice. The model is not an exact replication since we have a somewhat simpler landscape of sugar and spice resources included, as well as a simple reproduction rule where agents with a certain accumulated wealth derive an offspring (if a nearby empty patch is available).
The model is discussed in Introduction to Agent-Based Modeling by Marco Janssen. For more information see https://intro2abm.com/

Mismatch

Omid Roozmand Guillaume Deffuant | Published Fri Sep 18 14:19:54 2020

This model investigates how anti-conformist intentions could be related to some biases on the perception of attitudes. It starts from two case studies, related to the adoption of organic farming, that show anti-conformist intentions. It proposes an agent-based model which computes an intention based on the Theory of Reasoned Action and assumes some biases in the perception of others’ attitudes according to the Social Judgement Theory.
It investigates the conditions on the model parameter values for which the simulations reproduce the features observed in the case studies. The results suggest that perception biases are indeed likely to contribute to anti-conformist intentions.

Leviathan - Single Group Model

Thibaut Roubin | Published Thu Sep 17 15:21:40 2020

The model is based on the influence function of the Leviathan model (Deffuant, Carletti, Huet 2013 and Huet and Deffuant 2017), considering that all the agents belong to the same ingroup. This agent-based model studies how sharing the same group identity reduce the potential negative effect of gossip.

We consider agents sharing a single group, having an opinion/esteem about each other, about themselves and about the group. During dyadic meetings, agents change their respective opinion about each other, about the group, and possibly about other agents they gossip about, with a noisy perception of the opinions of their interlocutor. Highly valued agents are more influential in such encounters. The expressed opinion of an agent about another one is a combination of the opinion about the other agent and the opinion about the group.

We show that the addition of the group in the Leviathan model reduce the discrepancy between reputations, even if the group is not very important for the agents. In addition, the homogenization of the opinions reduce the negative effect of gossip.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.