Community

Displaying 10 of 123 results Simulation clear

Kit Martin Member since: Thu, Jan 15, 2015 at 02:44 PM Full Member

B.A. History, Bard College, M.A. International Development Practice Humphrey School of Public Affairs, PhD. Northwestern, Learning Sciences

I have a strong background in building and incorporating agent-based simulations for learning. Throughout my graduate career, I have worked at the Center for Connected Learning and Computer Based Modeling (CCL), developing modeling and simulation tools for learning. In particular, we develop NetLogo, the gold standard agent-based modeling environment for learners around the world. In my dissertation work, I marry biology and computer science to teach the emergent principles of ant colonies foraging for food and expanding. The work builds on more than a decade of experience in ABM. I now work at the Center for the Science and the Schools as an Assistant Professor. We delivered a curriculum to teach about COVID-19, where I incorporated ABMs into the curriculum.

You can keep up with my work at my webpage: https://kitcmartin.com

Studying the negative externalities of networks, and the ways in which those negatives feedback and support the continuities.

Carole Adam Member since: Fri, Feb 03, 2017 at 02:58 PM

PhD in Artificial Intelligence
  • Since 2010: Associate Professor in Artificial Intelligence at Grenoble-Alpes University. Topic: human behaviour modelling, with a particular focus on emotions, cognitive biases, and their interplay with decision-making; social simulations and serious games for raising awareness about natural disasters and sustainable development, or for increasing civil engagement in urban planning.
  • 2008-2010: postdoctoral research fellow at RMIT, Melbourne, Australia. Supervisor: Lin Padgham. Topic: interactive intelligent emotional toy.
  • 2007-2008: research engineer at Orange Labs, Lannion, France. Supervisor: Vincent Louis. Topic: institutional logic in JADE for agent-based B2B mediation.
  • 2007: PhD in AI from Toulouse University. Supervisors: Andreas Herzig and Dominique Longin. Topic: logical modelling of emotions in BDI for artificial agents.

Improving agent models and architectures for agent-based modelling and simulation applied to crisis management. In particular modelling of BDI agents, emotions, cognitive biases, social attachment, etc.

Designing serious games to increase awareness about climate change or natural disasters; to improve civil engagement in sustainable urban planning; to teach Artificial Intelligence to the general public; to explain social phenomena (voting procedures; sanitary policies; etc).

Anthony Di Fiore Member since: Fri, Aug 24, 2012 at 02:30 AM Full Member Reviewer

Ph.D. Biological Anthropology

Primate evolutionary biologist and geneticist at the University of Texas at Austin

I conduct long-term behavioral and ecological field research on several species in the primate community of Amazonian Ecuador to investigate the ways in which ecological conditions (such as the abundance and distribution of food resources) and the strategies of conspecifics together shape primate behavior and social relationships and ultimately determine the kinds of societies we see primates living in. This is a crucial and central focus in evolutionary anthropology, as understanding the ways in which behavior and social systems are shaped by environmental pressures is a fundamental part of the discipline.

I complement my field studies with molecular genetic laboratory work and agent-based simulation modeling in order to address issues that are typically difficult to explore through observational studies alone, including questions about dispersal behavior, gene flow, mating patterns, population structure, and the fitness consequences of individual behavior. In collaboration with colleagues, I have also started using molecular techniques to investigate a number of broader questions concerning the evolutionary history, social systems, and ecological roles of various New World primates.

Janice Ser Huay Lee Member since: Tue, Oct 14, 2014 at 02:48 PM

PhD in Environmental Systems Science

Modeling land use change from smallholder agricultural intensification

Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.

Bashar Ourabi Member since: Sun, Mar 12, 2017 at 10:00 PM Full Member Reviewer

Bsc Industrial Engineering, Masters of Public Administration/ Development Economics

Bashar Ourabi is a principle consultant at arabianconsult of Syria where he has been chairman since 2003. He holds Bsc. Eng., A Grad. Certificate in Project engineering from the University of Central Florida; and a MS. in Public Administration from the Doha Graduate Institute in Qatar.

Bashar completed his graduate studies at Doha Institute for Graduate Studies and his undergraduate studies at the Unversity of Central Florida. His research interests lie in the area of systems modelling, ranging from theory to design to implementation. He has collaborated actively with researchers in several other disciplines of computer science, system design, and bigData Artificial Intellegence, particularly BigData Expert System and Automated decision Making.

He has served on many international posts overlooking public infrastructure design and operations, varying from public transport, urban design and operations management. These posts spanned over the the US and the Middle East including Florida, UAE and Qatar.

Bashar has served on many conferences and workshop program committees and has succesfully delivered many corporate training programs..

BigData
Artificial Intellegence
Web Based Decision Making and Expert Systems
Fuzzy Logic
AgentBased Modelling
Discret Event Simulation
Corporate Support Systems

Mazaher Kianpour Member since: Thu, Oct 25, 2018 at 07:38 AM Full Member

B.Sc., Computer Engineering, Payame Noor University, M.Sc., Computer Engineering, Shahid Beheshti University, Ph.D., Information Security, Norwegian University of Science and Technology

Mazaher Kianpour is a PhD candidate at NTNU. He holds a Bachelor’s degree in Computer Engineering (Software) from the Payame Noor University. He obtained his Master’s degree in Architecture of Computer Systems from Shahid Beheshti University, Tehran, Iran. He started his PhD in Information Security at NTNU in May 2018. His PhD research lies at the intersection of economics and information security with a socio-technical perspective. He has several years of work experience at Tehran University of Medical Sciences, and his professional training includes Computer Networks, Cybersecurity and Risk Management.

My main research interest is modelling of information security, business operations and deterrents in complex ICT ecosystem. I will in particular focus on the complex interaction between various stakeholders and actors in the information security business domain. In order to model and better understand the information security ecosystem, I rely on agent-based simulation and quantitative modelling techniques such as stochastic modelling, discrete event simulations and game theory. Of particular interest is to gain increased understanding on how various security threats and measures influence business operations in the digital ecosystem.

Forrest Stonedahl Member since: Fri, Jan 20, 2012 at 08:34 PM Full Member Reviewer

Masters in Computer Science at Northwestern University, PhD in Computer Science at Northwestern University

My primary research interests lie at the intersection of two fields: evolutionary computation and multi-agent systems. I am specifically interested in how evolutionary search algorithms can be used to help people understand and analyze agent-based models of complex systems (e.g., flocking birds, traffic jams, or how information diffuses across social networks). My secondary research interests broadly span the areas of artificial life, multi-agent robotics, cognitive/learning science, design of multi-agent modeling environments. I enjoy interdisciplinary research, and in pursuit of the aforementioned topics, I have been involved in application areas from archeology to zoology, from linguistics to marketing, and from urban growth patterns to materials science. I am also very interested in creative approaches to computer science and complex systems education, and have published work on the use of multi-agent simulation as a vehicle for introducing students to computer science.

It is my philosophy that theoretical research should be inspired by real-world problems, and conversely, that theoretical results should inform and enhance practice in the field. Accordingly, I view tool building as a vital practice that is complementary to theoretical and methodological research. Throughout my own work I have contributed to the research community by developing several practical software tools, including BehaviorSearch (http://www.behaviorsearch.org/)

Xiaotian Wang Member since: Fri, Mar 28, 2014 at 02:23 AM

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

Volker Grimm Member since: Wed, Jul 18, 2007 at 11:13 AM Full Member Reviewer

Volker Grimm currently works at the Department of Ecological Modelling, Helmholtz-Zentrum für Umweltforschung. Volker does research in ecology and biodiversity research.

How to model it: Ecological models, in particular simulation models, often seem to be formulated ad hoc and only poorly analysed. I am therefore interested in strategies and methods for making ecological modelling more coherent and efficient. The ultimate aim is to develop preditive models that provide mechanstic understanding of ecological systems and that are transparent and structurally realistic enough to support environmental decision making.

Pattern-oriented modelling: This is a general strategy of using multiple patterns observed in real systems as multiple criteria for chosing model structure, selecting among alternative submodels, and inversely determining entire sets of unknown model parameters.

Individual-based and agent-based modelling: For many, if not most, ecological questions individual-level aspects can be decisive for explaining system-level behavior. IBM/ABMs allow to represent individual heterogeneity, local interactions, and/or adaptive behaviour

Ecological theory and concepts: I am particularly interested in exploring stability properties like resilience and persistence.

Modelling for ecological applications: Pattern-oriented modelling allows to develop structurally realistic models, which can be used to support decision making and the management of biodiversity and natural resources. Currently, I am involved in the EU project CREAM, where a suite of population models is developed for pesticide risk assessment.

Standards for model communication and formulation: In 2006, we published a general protocol for describing individual- and agent-based models, called the ODD protocol (Overview, Design concepts, details). ODD turned out to be more useful (and needed) than we expected.

Raquel Guimarães Member since: Mon, Oct 21, 2019 at 09:27 AM Full Member

Ph.D., Demography, Universidade Federal de Minas Gerais, M.A., International and Comparative Education, Stanford University

Raquel Guimaraes is a Postdoctoral Research Scholar at IIASA with support from the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES). She is hosted by the Advanced Systems Analysis (ASA), Risk and Vulnerability (RISK), and World Population (POP) programs. Dr. Guimaraes is currently on sabbatical leave from her appointment as an Adjunct Professor in the Economics Department at the Federal University of Paraná (Brazil), where she carries out research on, as well as teaching, economic demography, development microeconomics and applied microeconometrics.

In her research at IIASA, Dr. Guimaraes aims to contribute to the extant literature and to policy-making by offering a case study from Brazil, examining whether and how individual exposure to floods did or not induce affected migration in a setting with intense urbanization, the city of Governador Valadares, in the State of Minas Gerais. To elucidate the role of vulnerability at the household-level in mediating the relationship between mobility and floods, she will rely on causal models and simulation analysis. Her study is aligned with and will have support from, the Brazilian Network for Research on Global Climate Change (Rede Clima), which is an important pillar in support of R&D activities of the Brazilian National Climate Change Plan.

Dr. Guimaraes graduated from the Federal University of Minas Gerais, Brazil, in 2007 with degrees in economics. She completed an MA degree in International Comparative Education at Stanford University (2011) and earned a doctorate in demography from the Federal University of Minas Gerais in 2014.

Displaying 10 of 123 results Simulation clear

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept