Community

Yutaka NAKAI Member since: Sunday, November 24, 2019 Full Member

Professor of Shibaura Institute of Technology

Computational social science
especially, evolutionary simulation of a society

Antonio Carvajal-Rodriguez Member since: Wednesday, April 15, 2015

PhD genetics, Computer Systems Engineer

I am interested in the interface between biology and computation. I am especially focused on modelling and simulation of evolutionary processes.

David Earnest Member since: Saturday, March 13, 2010 Full Member Reviewer

Ph.D. in political science (2004), M.A. in security policy studies (1994)

Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.

I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.

While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.

Forrest Stonedahl Member since: Friday, January 20, 2012 Full Member Reviewer

Masters in Computer Science at Northwestern University, PhD in Computer Science at Northwestern University

My primary research interests lie at the intersection of two fields: evolutionary computation and multi-agent systems. I am specifically interested in how evolutionary search algorithms can be used to help people understand and analyze agent-based models of complex systems (e.g., flocking birds, traffic jams, or how information diffuses across social networks). My secondary research interests broadly span the areas of artificial life, multi-agent robotics, cognitive/learning science, design of multi-agent modeling environments. I enjoy interdisciplinary research, and in pursuit of the aforementioned topics, I have been involved in application areas from archeology to zoology, from linguistics to marketing, and from urban growth patterns to materials science. I am also very interested in creative approaches to computer science and complex systems education, and have published work on the use of multi-agent simulation as a vehicle for introducing students to computer science.

It is my philosophy that theoretical research should be inspired by real-world problems, and conversely, that theoretical results should inform and enhance practice in the field. Accordingly, I view tool building as a vital practice that is complementary to theoretical and methodological research. Throughout my own work I have contributed to the research community by developing several practical software tools, including BehaviorSearch (http://www.behaviorsearch.org/)

Andrew White Member since: Tuesday, July 31, 2012 Full Member Reviewer

PhD Anthropology, MA Anthropology, BA Anthropology; BA Journalism

I am an anthropological archaeologist with broad interests in hunter-gatherers, lithic technology, human evolution, and complex systems theory. I am particularly interested in understanding processes of long term social, evolutionary, and adaptational change among hunter-gatherers, specifically by using approaches that combine archaeological data, ethnographic data, and computational modeling.

Paul Smaldino Member since: Sunday, May 06, 2012

PhD

I am interested in the evolutionary, cultural, and psychological processes through which complex human organizational patterns emerge. My approach consists largely of developing and analyzing mathematical and computational models of dynamic populations, which are informed by research across many disciplines. Some areas of study closely related to my work include social and cultural evolution, social identity and group formation, mate choice, institutional mechanisms for cooperation, social and cultural constraints on decision making, cognition, biological pattern formation, agent-based modeling, and the philosophy of modeling.

kianercy Member since: Wednesday, January 04, 2012

Msc. Mechanical Eng., Msc. Chemical Eng.

Adapting Agents on Evolving Networks: An evolutionary game theory approach

Sylvie Geisendorf Member since: Friday, October 06, 2017

Dr., Prof.

Topics:

Behavioural aspects of environmental problems: Use of evolutionary approaches to investigate how people react to environmental policy.
Resource scarcity
Climate-economic Models: Understand how economic agents think and decide about climate change and climate protection
Sustainable Development

Methods:

Agent-Based-Modeling
Genetic algorithms
Evolutionary economics
Behavioural economics
Ecological economics
Complexity Theory

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.