Human-Environment relations
socio-ecological systems
Transitions
Simulation modeling
Modelling of socio-ecological systems and management of common property resources in artisanal fisheries. Population dynamics of coastal marine invertebrates exploited by artisanal fisheries.
Moira Zellner’s academic background lies at the intersection of Urban and Regional Planning, Environmental Science, and Complexity. She has served as Principal Investigator and Co-Investigator in interdisciplinary projects examining how specific policy, technological and behavioral factors influence the emergence and impacts of a range of complex socio-ecological systems problems, where interaction effects make responsibilities, burdens, and future pathways unclear. Her research also examines how participatory complex systems modeling with stakeholders and decision-makers can support collaborative policy exploration, social learning, and system-wide transformation. Moira has taught a variety of workshops on complexity-based modeling of socio-ecological systems, for training of both scientists and decision-makers in the US and abroad. She has served the academic community spanning across the social and natural sciences, as reviewer of journals and grants and as a member of various scientific organizations. She is dedicated to serving the public through her engaged research and activism.
Applications of agent-based modeling to urban and environmental planning
Participatory modeling
My interests is always on the dynamic interactions of human and their habitat (nature/built environment, etc.). At the moment my researches focus on the political-ecology analysis of human-nature interactions and social-ecological systems analysis. I am interested in using Agent-Based Model to support my works. I have been using ABM for quite some years, although not putting too much focus on it at the moment.
I am a Professor in the School of Sustainability and the Director of the Center for Behavior, Institutions and the Environment. I want to understand how people solve collective problems at different levels of scale, especially those problems related to sustainability of our environment. Our society experience unprecedented challenged to sustain common resource for future generations at a scale we have never experienced before. What makes groups cooperate? What is the role of information? How does the ecological context affect the social fabric? How do they deal with a changing environment? How can we use these insight to address global challenges? To do this research I combine behavioral experiments, agent-based modeling and case study analysis.
My research interests stand between natural resource management and ecological economics. The aim of my PhD project responds to the increasing demand for cross-disciplinary agent-based models that examine the disjunction between economic growth and more sustainable use of natural resources.
My research attempts to test the effectiveness of different governance and economic frameworks on managing natural resources sustainably at both regional and national levels. The goal is to simulate how communities and institutions manage the commons in complex socio-ecological systems through several case-studies, e.g. rainforest management in Australia. It is hoped that the models will highlight which combination of variables lead to positive trends in both economic and environmental indicators, which could stimulate more sustainable practices by governments, private sectors and civil society.
Professor, School of Human Evolution & Social Change
Professor, School of Complex Adaptive Systems
Affiliate Professor, School of Earth and Space Exploration
Arizona State University
My interests center around long-term human ecology and landscape dynamics with ongoing projects in the Mediterranean (late Pleistocene through mid-Holocene) and recent work in the American Southwest (Holocene-Archaic). I’ve done fieldwork in Spain, Bosnia, and various locales in North America and have expertise in hunter/gatherer and early farming societies, geoarchaeology, lithic technology, and evolutionary theory, with an emphasis on human/environmental interaction, landscape dynamics, and techno-economic change.
Quantitative methods are critical to archaeological research, and socioecological sciences in general. They are an important focus of my research, especially emphasizing dynamic modeling, spatial technologies (including GIS and remote sensing), statistical analysis, and visualization. I am a member of the open source GRASS GIS international development team that is making cutting edge spatial technologies available to researchers and students around the world.
Modeling land use change from smallholder agricultural intensification
Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.
I am a geographer interested in exploring tourism system dynamics and assessing tourism’s role in environmental sustainability using agent-based modelling (ABM). My current work focus is on human complex systems interactions with the environment and on the application of tools (such as scenario analysis, network analysis and ABM) to explore topics systems adaptation, vulnerability and resilience to global change. I am also interested in looking into my PhD future research directions which pointed the potential of Big Data, social media and Volunteer Geographical Information to increase destination awareness.
I have extensive experience in GIS, quantitative and qualitative methods of research. My master thesis assessed the potential for automatic feature extraction from QuickBird imagery for municipal management purposes. During my PhD I have published and submitted several scientific papers in ISI indexed journals. I have a good research network in Portugal and I integrate an international research network on the topic “ABM meets tourism”. I am a collaborator in a recently awarded USA NCRCRD grant project “Using Agent Based Modelling to Understand and Enhance Rural Tourism Industry Collaboration” and applied for NSF funding with the project “Understanding and Enhancing the Resilience of Recreation and Tourism Dependent Communities in the Gulf”.
Kenneth D. Aiello is a postdoctoral research scholar with the Global BioSocial Complexity Initiative at ASU. Kenneth’s research contributes to cross disciplinary conversations on how historical developments in biological, social, and cultural knowledge systems are governed by processes that transform the structure, dynamics, and function of complex systems. Applying computational historical analysis and epistemology to question what scientific knowledge is and how we can analyze changes in knowledge, he uses text analysis, social network analysis, and machine learning to measure similarities and differences between the knowledge claims of individual agents and groups. His work builds on how to assess contested knowledge claims and measure the evolution of knowledge across complex systems and multiple dimensions of scale. This approach also engages in dynamic new debates about global and local structures of knowledge shaped by technological innovation within microbiology related to public policy, shrinking resources given to biomedical ideas as opposed to “translation”, and the ethics of scientific discovery. Using interdisciplinary methods for understanding historical content and context rich narratives contributes to understanding new domains and major transitions in science and provides a richer understanding of how knowledge emerges.