Community

Xiaotian Wang Member since: Friday, March 28, 2014

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

Jacob Nabe-Nielsen Member since: Tuesday, August 27, 2019 Full Member

My research is focused on understanding the importance of spatial and temporal environmental variability on communities and populations. The key question I aim to address is how the anthropogenic impacts, such as disturbances of individual animals or changed landscape heterogeneity associated with climate changes, influence the persistence of species. The harbour porpoise is an example of a species that is influenced by anthropogenic disturbances, and much of my research has focused on how the Danish porpoise populations are influenced by noise from offshore constructions. I use a wide range of modelling tools to assess the relative importance of different sources of environmental variation, including individual-based/agent based models, spatial statistics, and classical population models. This involves development of computer programs in R and NetLogo. In addition to my own research I currently supervise three PhD students and participate in the management of Department of Bioscience at Aarhus University.

Volker Grimm Member since: Wednesday, July 18, 2007 Full Member Reviewer

Volker Grimm currently works at the Department of Ecological Modelling, Helmholtz-Zentrum für Umweltforschung. Volker does research in ecology and biodiversity research.

How to model it: Ecological models, in particular simulation models, often seem to be formulated ad hoc and only poorly analysed. I am therefore interested in strategies and methods for making ecological modelling more coherent and efficient. The ultimate aim is to develop preditive models that provide mechanstic understanding of ecological systems and that are transparent and structurally realistic enough to support environmental decision making.

Pattern-oriented modelling: This is a general strategy of using multiple patterns observed in real systems as multiple criteria for chosing model structure, selecting among alternative submodels, and inversely determining entire sets of unknown model parameters.

Individual-based and agent-based modelling: For many, if not most, ecological questions individual-level aspects can be decisive for explaining system-level behavior. IBM/ABMs allow to represent individual heterogeneity, local interactions, and/or adaptive behaviour

Ecological theory and concepts: I am particularly interested in exploring stability properties like resilience and persistence.

Modelling for ecological applications: Pattern-oriented modelling allows to develop structurally realistic models, which can be used to support decision making and the management of biodiversity and natural resources. Currently, I am involved in the EU project CREAM, where a suite of population models is developed for pesticide risk assessment.

Standards for model communication and formulation: In 2006, we published a general protocol for describing individual- and agent-based models, called the ODD protocol (Overview, Design concepts, details). ODD turned out to be more useful (and needed) than we expected.

Robert Axtell Member since: Thursday, July 14, 2016

Ph.D.

Agent-based computing in economics and finance
Large-scale agent-based models
Agent models calibrated by micro-data
Complex adaptive systems
Mathematical analysis of agent systems

Ian Stuart Member since: Saturday, January 09, 2021 Full Member

I have only just started becoming active in research/agent based modeling.

I find agent based computational economics interesting. I would also be interested in combining agent based modeling to explore cultural anthropology, government policies, socioeconomic stratification, and the diffusion of information.

James Taylor Member since: Thursday, September 19, 2013

BS

Secondary education, agent-based modeling and computational science in education

Saeed abdolhoseini Member since: Wednesday, February 14, 2018 Full Member

This is Saeed Abdolhosseini. I am very interested in the area of agent based modeling and it is about 3 years that I am working on Agent-Based Modeling. I have a good experience of working with Netlogo &Repast simphony & Anylogic. I have developed a few ABM application.

Specialties: Agent-based models of social systems

Agent Based Modeling

Adrian Groza Member since: Monday, April 29, 2013

Phd in Computer Science

Flexible agent communication
Argumentation in multi-agent systems
Knowledge representation and reasoning
Ontologies for agents
Mediation and Dispute Resolution

hirbod Member since: Saturday, September 01, 2012

BSc Computer Science

Multi-agent Systems, Agent Based Modeling, Artificial Intelligence

Malik Koné Member since: Thursday, January 21, 2016

Master in mathematics and didactics

Agent Based Modeling (ABM), Agent Based Social System (ABSS), Multi-Agent Systems (MAS), Bayesian learning, Social networks Analysis (SNA), Socio ecological Dynamics.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.