Community

Displaying 10 of 81 results for "David Moore" clear search

Muaz Niazi Member since: Sun, Jun 07, 2009 at 08:40 AM Full Member

BE (Hons), MS CS, PhD

Muaz is a Senior Member of the IEEE and has more than 15 years of professional, teaching and research experience. Muaz has been working on Communication Systems and Networks since 1995. His BS project in 1995 was on the development of a Cordless Local Area Network. In 1996, his postgraduate project was on Wireless Connectivity of devices to Computers. In addition to his expertise as an Communications engineer, his areas of research interest are in the development of agent-based and complex network-based models of Complex Adaptive Systems. He has worked on diverse case studies ranging from Complex Communication Networks, Biological Networks, Social Networks, Ecological system modeling, Research and Scientometric modeling and simulation etc. He has also worked on designing and developing embedded systems, distributed computing, multiagent and service-oriented architectures.

Bartosz Bartkowski Member since: Tue, Sep 25, 2018 at 07:20 AM

I am an environmental economist at UFZ - Helmholtz Centre for Environmental Research in Leipzig, Germany. I did my PhD (Dr. rer. pol.) in environmental economics at the Martin Luther University Halle-Wittenberg in 2017. Before that, I received my master’s (2013; economics) and bachelor’s degrees (2010; cultural studies) from the same university.

My research focus is on the economic analysis of agri-environmental policy instruments as means to navigate ecosystem service trade-offs in multifunctional landscapes. In this context, I am particularly interested in identifying policy instruments and instrument mixes allowing to align societal preferences with biophysical potential of landscapes to provide multiple ecosystem services. Here, the mutual relationship between regulatory and incentive-based instruments is of much interest. Using agent-based modelling, but also more qualitative approaches, I look at the emerging landscape-level patterns that result from various policy mixes given realistic descriptions of farmers’ behaviour and institutional settings.

Gwyneth Bradbury Member since: Thu, Jan 28, 2016 at 10:28 AM

BSc Mathematics, MSc Computer Graphics, Vision and Imaging, MRes Virtual Environments, Imaging and Visualisation, EngD (pending) Virtual Environments, Imaging and Visualisation

MY research aims to give artists better 3D references and scene reconstructions which can be directly fed into the creative pipeline. This is motivated by increasing public demand for detailed, complex 3D worlds and the resulting demand this places on world design artists.

This project lookings at developing acquisition and modelling technologies that provide more than just a visual reference: in the context of this project, visual acquisition and reconstruction methods shall be developed that provide richer, three-dimensional references, and that ultimately yield scene reconstructions that can directly be fed into the content creation pipeline. The project will focus on natural environments (as opposed to urban scenes) and may combine multi-spectral imaging, wide-baseline stereo reconstruction and semantic scene analysis to obtain approximate procedural representations of natural scenes.

Dale Rothman Member since: Thu, Jan 19, 2017 at 08:07 PM Full Member

S.B. 1984, MIT, Earth and Planetary Sciences, PhD, 1993, Cornell University, Resource and Environmental Economics

I have a BS in Earth Sciences and a PhD in Resource and Environmental Economics. I have more than 25 years of experience doing research and teaching and advising students in systems thinking, scenario development, simulation, and ecological economics. Presently, I am an Associate Professor in the Department of Computational & Data Sciences at George Mason University, and a member of the Center for Social Complexity. I teach the introductory courses on Computational Social Sciences at both the undergraduate and graduate levels, as well as beginning and advanced courses in complex systems, modeling, and simulation. My current research focuses on the use of scenario development and integrated modeling as applied to social-ecological systems. My recent work has focused on applying these to issues related to climate change economics and policy, including new technologies for greenhouse gas removal and solar radiation management.

David Earnest Member since: Sat, Mar 13, 2010 at 03:46 PM Full Member

Ph.D. in political science (2004), M.A. in security policy studies (1994)

Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.

I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.

While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.

Davide Natalini Member since: Sat, Dec 07, 2013 at 12:57 PM

MSc in Political Science - Environmental Policies and Economics, University of Torino, Italy, BSc in Political Science - International Relations, University of Bologna, Italy

The Global Resource Observatory (GRO)

The Global Resource Observatory is largest single research project being undertaken at the GSI, it investigates how the scarcity of finite resources will impact global social and political fragility in the short term. The ambitious three year project, funded by the Dawe Charitable Trust, will enable short term decision making to account for ecological and financial constraints of a finite planet.

GRO will include an open source multidimensional model able to quantify the likely short term interactions of the human economy with the carrying capacity of the planet and key scarce resources. The model will enable exploration of the complex interconnections between the resource availability and human development, and provides projections over the next 5 years.

Data and scenarios will be geographically mapped to show the current and future balance and distribution of resources across and within countries. The GRO tool will, for the first time, enable the widespread integration of the implications of depleting key resource into all levels of policy and business decision-making.

Edmund Chattoe-Brown Member since: Tue, Apr 17, 2012 at 03:19 PM Full Member

BA PPE (Oxon): First Class Tripartite, MSc Knowledge Based Systems (Sussex), DPhil (Oxon): "The Evolution of Expectations in Boundedly Rational Agents"

I have been involved in agent-based modelling since the early nineties with a consistent attention to methdological improvement, institutional development and empirical issues. My mission is that ABM should be a routinely accepted research method (with a robust methodology) across the social sciences. To this end I have built diverse models and participated in research projects across economics, law, medicine, psychology, anthropology and sociology. I took a DPhil in economics on adaptive firm behaviour and then was involved in two research projects on money management and farmer decision making. Since 2006 I have worked at the Department of Sociology (now the School of Media, Communication and Sociology) at the University of Leicester. I was involved in the founding of JASSS and (more recently RofASSS https://rofasss.org) and have regularly served on the review panels for international conferences in the ABM community.

Decision making, research design and research methods, social networks, innovation diffusion, secondhand markets.

Kit Martin Member since: Thu, Jan 15, 2015 at 02:44 PM Full Member

B.A. History, Bard College, M.A. International Development Practice Humphrey School of Public Affairs, PhD. Northwestern, Learning Sciences

I have a strong background in building and incorporating agent-based simulations for learning. Throughout my graduate career, I have worked at the Center for Connected Learning and Computer Based Modeling (CCL), developing modeling and simulation tools for learning. In particular, we develop NetLogo, the gold standard agent-based modeling environment for learners around the world. In my dissertation work, I marry biology and computer science to teach the emergent principles of ant colonies foraging for food and expanding. The work builds on more than a decade of experience in ABM. I now work at the Center for the Science and the Schools as an Assistant Professor. We delivered a curriculum to teach about COVID-19, where I incorporated ABMs into the curriculum.

You can keep up with my work at my webpage: https://kitcmartin.com

Studying the negative externalities of networks, and the ways in which those negatives feedback and support the continuities.

Arika Ligmann-Zielinska Member since: Tue, Apr 08, 2008 at 04:06 PM Full Member

PhD

I am a spatial (GIS) agent-based modeler i.e. modeler that simulates the impact of various individual decisions on the environment. My work is mainly methodological i.e. I develop tools that make agent-based modeling (ABM) easier to do. I especially focus on developing tools that allow for evaluating various uncertainties in ABM. One of these uncertainties are the ways of quantifying agent decisions (i.e. the algorithmic representation of agent decision rules) for example to address the question of “How do the agents decide whether to grow crops or rather put land to fallow?”. One of the methods I developed focuses on representing residential developers’ risk perception for example to answer the question: “to what extent is the developer risk-taking and would be willing to build new houses targeted at high-income families (small market but big return on investment)?”. Other ABM uncertainties that I evaluate are various spatial inputs (e.g. different representations of soil erosion, different maps of environmental benefits from land conservation) and various demographics (i.e. are retired farmers more willing to put land to conservation?). The tools I develop are mostly used in (spatial) sensitivity analysis of ABM (quantitative, qualitative, and visual).

koene Member since: Sun, Mar 25, 2012 at 04:06 PM

PhD, MSc

My core research interest is to understand how humans and other living creature perceive and behave; respond and act upon their environment and how this dynamic interplay shapes us into who we are. In recognition of the broad scope of this question I am a strong believer in the need for inter- and multi-disciplinary approaches and have worked at research groups in a wide range of departments and institutions, including university departments of Physics as well as Psychology, a bio-medical research lab, a robotics research laboratory and most recently the RIKEN Brain Science Institute. Though my work has primarily taken the form of computational neuroscience I have also performed psychophysical experiments with healthy human subjects, been involved in neural imaging experiments and contributed towards the development of a humanoid robot.

Based on the philosophy of ‘understanding through creating’ I believe that bio-mimetic and biologically inspired computational and robotic engineering can teach us not only how to build more flexible and robust tools but also how actual living creatures deal with their environment. I am therefore a strong believer in the fertile information exchange between scientific as well as engineering research disciplines.

Displaying 10 of 81 results for "David Moore" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept