Didier’s Research:
are related to interoperability and conflation models in geospatial analysis and integrated modelling applications, particularly in the context of spatial data infrastructures such as GEOSS. This translates to a focus on geospatial statistics, geospatial patterns, outbreak detection and geospatial data mining in general, but also to data quality and uncertainty propagation principles in relation to geoworkflows connected to/using web services. Didier’s research centres on environmental agro-ecological geospatial models, and public health and spatial epidemiology applications. (see website)
Guido Fioretti, born 1964, graduated in Electronic Engineering in 1991 at La Sapienza University, Rome. In 1995, he received a PhD in Economics from this same university. Guido Fioretti is currently a lecturer of Organization Science at the University of Bologna.
I am interested in combining social with cognitive sciences in order to model decision-making facing uncertainty. I am particularly interested in connectionist models of individual and organizational decision-making.
I may make use of agent-based models, statistical network analysis, neural networks, evidence theory, cognitive maps as well as qualitative research, with no preference for any particular method. I dislike theoretical equilibrium models and empirical research based on testing obvious hypotheses.
I am a spatial (GIS) agent-based modeler i.e. modeler that simulates the impact of various individual decisions on the environment. My work is mainly methodological i.e. I develop tools that make agent-based modeling (ABM) easier to do. I especially focus on developing tools that allow for evaluating various uncertainties in ABM. One of these uncertainties are the ways of quantifying agent decisions (i.e. the algorithmic representation of agent decision rules) for example to address the question of “How do the agents decide whether to grow crops or rather put land to fallow?”. One of the methods I developed focuses on representing residential developers’ risk perception for example to answer the question: “to what extent is the developer risk-taking and would be willing to build new houses targeted at high-income families (small market but big return on investment)?”. Other ABM uncertainties that I evaluate are various spatial inputs (e.g. different representations of soil erosion, different maps of environmental benefits from land conservation) and various demographics (i.e. are retired farmers more willing to put land to conservation?). The tools I develop are mostly used in (spatial) sensitivity analysis of ABM (quantitative, qualitative, and visual).
Arpan Jani received his PhD in Business Administration from the University of Minnesota in 2005. He is currently an Associate Professor in the Department of Computer Science and Information Systems at the University of Wisconsin – River Falls. His current research interests include agent-based modeling, information systems and decision support, behavioral ethics, and judgment & decision making under conditions of risk and uncertainty.
agent-based modeling; behavioral ethics; information systems and decision support; project management; judgment & decision making under conditions of risk and uncertainty.
Human behavioral ecology, marine ecology, cognitive sciences, decision making under uncertainty
Water scarcity generated by climate change and mismanagement, affects individual at microlevel and the society and the system at a more general level. The research focuses on irrigation system and their robustness and adaptation capacity to uncertainty. In particular it investigates the evolution of farmers interactions and the effectiveness of policies by means of dynamic game theory and incorporate the results into an Agent Based Model to explore farmers emergent behaviors and the role of an agency in defining policies. Early knowledge of individual decision makers could help the agency to design more acceptable solutions.
My research examines the most effective and efficient policies for renewable energy development using an approach that integrates input-output analysis, life cycle analysis, econometric, and agent-based modelling to estimate the impacts of the policies to economic, emission, extracted materials, renewable energy capacity and social acceptance.
Mainly interested in studying social networks of learners, teachers, and innovators. Uses Social Network Analysis, but also sentiment analysis, data mining, and recommender system techniques.