Community

Savi Maharaj Member since: Thursday, August 15, 2013

PhD (Computer Science, Edinburgh), MSc (Computer Systems Engineering, Edinburgh), BSc (Maths and Computer Science, University of the West Indies)

Agent-based modeling of human behaviour; virtual experiments

Simone Righi Member since: Friday, June 08, 2018

I received a Ph.D. in Economics at the University of Namur (Belgium) in June 2012 with a thesis titled “Essays in Information Aggregation and Political Economics”.
After two years at the Research Center for Educational and Network Studies (Recens) of the Hungarian Academy of Sciences, I joined the Department of Economics “Marco Biagi” of the University of Modena and Reggio Emilia in January 2015 and then the Department of Agricultural and Food Sciences of the University of Bologna.
I am currently a Lecturer in Financial Computing at the Department Computer Science (Financial Computing and Analytics group) - University College London. Moreover I am an affiliated researcher of the DYNAMETS - Dynamic Systems Analysis for Economic Theory and Society research group and an affiliate member of the Namur Center for Complex Systems (Naxys).

My research interests concern the computational study of financial markets (microstructure, systemic properties and behavioral bias), of social Interactions on complex networks (theory and experiments), the evolution of cooperation in networks (theory and experiments) and the study of companies strategies in the digital economy.

Andrew Bell Member since: Thursday, January 23, 2014 Full Member Reviewer

PhD, Natural Resource Management, University of Michigan

Andrew Bell (Ph.D. 2010, Michigan) was a Research Fellow in the Environment and Production Technology Division at the International Food Policy Research Institute (IFPRI) in Washington, DC. His current research portfolio focuses on the use of field instruments – such as discrete choice experiments, framed field experiments, randomized control trials – to inform behavior in agent-based models of coupled human-natural systems. Prior to this post, Andrew was a post-doctoral research fellow at The Earth Institute at Columbia University, where he focused on developing applications for paleo-climate histories.

James Taylor Member since: Thursday, September 19, 2013

BS

Secondary education, agent-based modeling and computational science in education

Gul Deniz Salali Member since: Sunday, November 15, 2015 Full Member

PhD in Biological Anthropology, UCL

I studied Molecular Biology and Genetics at Istanbul Technical University. During my undergraduate studies I became interested in the field of Ecology and Evolution and did internships on animal behaviour in Switzerland and Ireland. I then went on to pursue a 2-year research Master’s in Evolutionary Biology (MEME) funded by the European Union. I worked on projects using computer simulations to investigate evolution of social complexity and human cooperation. I also did behavioural economics experiments on how children learn social norms by copying others. After my Master’s, I pursued my dream of doing fieldwork and investigating human societies. I did my PhD at UCL, researching cultural evolution and behavioural adaptations in Pygmy hunter-gatherers in the Congo. During my PhD, I was part of an inter-disciplinary Hunter-Gatherer Resilience team funded by the Leverhulme Trust. I obtained a postdoctoral research fellowship from British Academy after my PhD. I am currently working as a British Academy research fellow and lecturer in Evolutionary Anthropology and Evolutionary Medicine at UCL.

  • Social learning and cultural evolution
  • Hunter-gatherers
  • Evolutionary medicine

Arika Ligmann-Zielinska Member since: Tuesday, April 08, 2008 Full Member Reviewer

PhD

I am a spatial (GIS) agent-based modeler i.e. modeler that simulates the impact of various individual decisions on the environment. My work is mainly methodological i.e. I develop tools that make agent-based modeling (ABM) easier to do. I especially focus on developing tools that allow for evaluating various uncertainties in ABM. One of these uncertainties are the ways of quantifying agent decisions (i.e. the algorithmic representation of agent decision rules) for example to address the question of “How do the agents decide whether to grow crops or rather put land to fallow?”. One of the methods I developed focuses on representing residential developers’ risk perception for example to answer the question: “to what extent is the developer risk-taking and would be willing to build new houses targeted at high-income families (small market but big return on investment)?”. Other ABM uncertainties that I evaluate are various spatial inputs (e.g. different representations of soil erosion, different maps of environmental benefits from land conservation) and various demographics (i.e. are retired farmers more willing to put land to conservation?). The tools I develop are mostly used in (spatial) sensitivity analysis of ABM (quantitative, qualitative, and visual).

upton9265 Member since: Wednesday, January 04, 2012

BS Physics, MS Operations Research, MS Physics, Applied Scientist Systems Engineering

Our overriding approach has been to advance the state-of-the-art in conducting large-scale simulation studies, by developing and disseminating experimental designs that facilitate the exploration of complex simulation models

Nathan Rollins Member since: Wednesday, August 27, 2008 Full Member Reviewer

I am a Ph.D. student studying the interactions between external regulations and social norms in natural resource management and international development. In particular, I am looking to use mixed methods research, including ethnographic research, field experiments, and agent-based computational models to explore the sustainability of market-based interventions and their possible perverse outcomes.

Nanda Wijermans Member since: Monday, October 11, 2010 Full Member Reviewer

In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’

To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.

koene Member since: Sunday, March 25, 2012

PhD, MSc

My core research interest is to understand how humans and other living creature perceive and behave; respond and act upon their environment and how this dynamic interplay shapes us into who we are. In recognition of the broad scope of this question I am a strong believer in the need for inter- and multi-disciplinary approaches and have worked at research groups in a wide range of departments and institutions, including university departments of Physics as well as Psychology, a bio-medical research lab, a robotics research laboratory and most recently the RIKEN Brain Science Institute. Though my work has primarily taken the form of computational neuroscience I have also performed psychophysical experiments with healthy human subjects, been involved in neural imaging experiments and contributed towards the development of a humanoid robot.

Based on the philosophy of ‘understanding through creating’ I believe that bio-mimetic and biologically inspired computational and robotic engineering can teach us not only how to build more flexible and robust tools but also how actual living creatures deal with their environment. I am therefore a strong believer in the fertile information exchange between scientific as well as engineering research disciplines.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.