Community

Displaying 10 of 13 results coupled clear search

Andrew Bell Member since: Thu, Jan 23, 2014 at 04:07 PM Full Member Reviewer

PhD, Natural Resource Management, University of Michigan

Andrew Bell (Ph.D. 2010, Michigan) was a Research Fellow in the Environment and Production Technology Division at the International Food Policy Research Institute (IFPRI) in Washington, DC. His current research portfolio focuses on the use of field instruments – such as discrete choice experiments, framed field experiments, randomized control trials – to inform behavior in agent-based models of coupled human-natural systems. Prior to this post, Andrew was a post-doctoral research fellow at The Earth Institute at Columbia University, where he focused on developing applications for paleo-climate histories.

Chris Bone Member since: Thu, Jul 16, 2015 at 08:36 PM Full Member

BA, Environmental Studies, University of Toronto

Research focuses on the coupled dynamics of human and natural systems, specifically in the context of forest dynamics. I utilize a variety of modeling and analysis techniques, including agent-based modeling, cellular automata, machine learning and various spatial statistics and GIS-related methods. I am currently involved in projects that investigate the anthropogenic and biological drivers behind native and invasive forest pathogens and insects.

John Bolte Member since: Thu, Oct 29, 2015 at 04:06 PM

PhD, Agricultural Engineering, Auburn University

Modeling coupled natural/human systems, climate impacts and mitigation policy.

Anh Nong Member since: Thu, Jan 21, 2016 at 10:42 AM

Master on Integrated Water Resources Management

Interested in IWRM approach, analyzing coupled human-water relationship, Hydrological modelling, Bayesian networks, Agent based modelling

Elizabeth Tellman Member since: Thu, Feb 25, 2016 at 05:00 AM

ms environmental science

disaster resilience, flooding, ecosystem services, coupled human natural systems, land use change, hydrology, remote sensing, complexity science

Jonathan Gillligan Member since: Fri, Jun 16, 2017 at 07:31 PM Full Member

Ph.D. Yale University (Physics) 1991

Integrating social and natural science to study coupled human-natural systems, and particularly the interactions of society with the physical environment under conditions of environmental stress.

Kimberly Rogers Member since: Wed, Dec 06, 2017 at 03:56 AM Full Member

Environmental Engineering, PhD, Geological Sciences, Physical Geography, BSc, Music and Music Production, AASc

Dr. Kimberly G. Rogers studies the coupled human-natural processes shaping coastal environments. She obtained a B.Sc. in Geological Sciences from the University of Texas at Austin and began her graduate studies on Long Island at Stony Brook University’s School of Marine and Atmospheric Sciences. Rogers completed her Ph.D. at Vanderbilt University, where she specialized in nearshore and coastal sediment transport. She was a postdoctoral scholar and research associate at the Institute for Arctic and Alpine Research at the University of Colorado Boulder. In 2014, her foundation in the physical sciences was augmented by training in Environmental Anthropology at Indiana University Bloomington through an NSF Science, Engineering, and Education for Sustainability (SEES) Fellowship.

Rogers’s research is broadly interdisciplinary and examines evolving sediment dynamics at the land-sea boundary, principally within the rapidly developing river deltas of South Asia. As deltas are some of the most densely populated coastal regions on earth, she incorporates social science methods to examine how institutions — particularly those governing land use and built infrastructure — influence the flow of water and sediment in coastal areas. She integrates quantitative and qualitative approaches in her work, such as direct measurement and geochemical fingerprinting of sediment transport phenomena, agent-based modeling, institutional and geospatial analyses, and ethnographic survey techniques. Risk holder collaboration is an integral part of her research philosophy and she is committed to co-production and capacity building in her projects. Her work has gained recognition from policy influencers such as the World Bank, USAID, and the US Embassy Bangladesh and has been featured in popular media outlets such as Slate and Environmental Health Perspectives.

Javed Ali Member since: Mon, Dec 17, 2018 at 03:24 PM Full Member

Flood Risk Management, Coupled Human-Natural System Modelling, Socio-hydrological Modelling, Agent-Based Modelling, Human Behaviour Modelling, Agent-Based Social Simulation, Hydrological and Hydraulic Modeling, Geographic Information Systems (GIS), Mapping, Risk Modelling and Risk Visualization, Disaster Risk Reduction

Eduardo César Member since: Fri, Nov 08, 2024 at 08:14 AM Full Member Reviewer

Ph.D., Computer Science, Universitat Autònoma de Barcelona, Undergraduate, Computer Engineering, Universidad Simón Bolívar

As of my incorporation into the Department of Computer Architecture and Operating Systems of the UAB as a postgraduate student, it is possible to divide my scientific-technical career into the following stages:

Simulation of Parallel Applications (1992-99): Focused on the design and development of simulators of parallel applications. This research main objective was the definition of abstractions for parallel programs, based on characterizing tasks and their dependences. Two main abstractions were developed, at first a simpler one, which was easier to parametrize, and, next, a more complex an accurate one. Using these characterizations, several simulation tools were programmed and used in the context of national and European projects. As part of my Master’s thesis, I was involved in the design and development of some of these simulation applications.

National projects: 4, European: 2

International conferences: 3, National: 1, Journal papers: 3

Security in Distributed Systems (2007-12): Focused on the design and development of the FPVA (First Principles Vulnerability Assessment) methodology for the evaluation of vulnerabilities in Grid applications. This methodology clearly defined a set of steps for the assessment of Grid applications vulnerabilities, most of these steps could be automatized or at least supported by specific tools. Jointly with other professors of our group and from the University of Wisconsin, I was involved in the original definition and application of this methodology.

International projects: 2

Master Thesis: 1, Ph.D. Thesis: 1

International conferences: 2, National: 1, Journal papers: 2

Parallel Application Modeling (1999-present): This is my main line of research, aimed at defining high-level performance models for parallel applications. Initially, models were defined for MPI applications with a master-worker and pipeline structure, but later this line has been expanded with the definition of models for memory-intensive OpenMP applications, composed (mix of several structures) applications, applications based on mathematical libraries, distributed data-intensive applications and, finally, applications based on the simulation of agents (ABS) with SPMD structure.

As a result of the work on modeling the performance of ABS parallel systems, we have opened a new line for the definition and implementation of a benchmark for assessing the performance of the parallel simulators generated by well-known platforms, such as FLAME, Repast-HPC or D-Mason. In addition, the knowledge we have gained on this topic has opened new ways of collaboration for optimizing real parallel ABS in the health sciences area (tumor growth and infection spread).

National projects: 12, European: 1

International conferences: 17, National: 4, Journal papers: 11

International Presentations: 4

Parallel Applications Tuning Tools (2010-present): Focused on the design and development of tools for automatic tuning and, in some cases, also dynamic tuning of parallel applications. These tools allow the integration of performance models in the form of external components provided by the analyst. For this reason, this research line is tightly coupled with the Parallel Application Modeling one. The two main tools developed totally or partially by our group are Monitoring Analysis and Tuning Environment-MATE (and its highly scalable evolution ELASTIC) and Periscope Tuning Framework-PTF.

National projects: 2, European: 1

International conferences: 11, Journal papers: 2

Tools: MATE, ELASTIC, PTF

International Presentations: 5

Nicholas Magliocca Member since: Mon, Jan 31, 2011 at 03:35 PM

Ph.D. in Geography and Environmental Systems, Master's in Environmental Management (M.E.M.), B.S. in Environmental Systems

My research focuses on building a systemic understanding of coupled human-natural systems. In particular, I am interested in understanding how patterns of land-use and land-cover change emerge from human alterations of natural processes and the resulting feedbacks. Study systems of interest include those undergoing agricultural to urban conversion, typically known as urban sprawl, and those in which protective measures, such as wildfire suppression or flood/storm impact controls, can lead to long-term instability.

Dynamic agent- and process-based simulation models are my primary tools for studying human and natural systems, respectively. My past work includes the creation of dynamic, process-based simulation models of the wildland fires along the urban-wildland interface (UWI), and artificial dune construction to protect coastal development along a barrier island coastline. My current research involves the testing, refinement, extension of an economic agent-based model of coupled housing and land markets (CHALMS), and a new project developing a generalized agent-based model of land-use change to explore local human-environmental interactions globally.

Displaying 10 of 13 results coupled clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept