Computational Model Library

Displaying 10 of 950 results for "Rolf Anker Ims" clear search

Best Practices for Civic Collaboration

Wei Zhong | Published Saturday, December 20, 2008 | Last modified Saturday, April 27, 2013

This is a modified version (Netlogo 4.0.3) of the model in support of Erik Johnstons dissertation, programmed in Netlogo 3.1.4 (May 15th, 2007).

This is a series of simulations of binary group decisions and the outcomes applied to a generalized version of Price’s Equation for system fitness.

Peer reviewed INOvCWD

Aniruddha Belsare | Published Wednesday, June 01, 2022 | Last modified Wednesday, July 10, 2024

INOvCWD is a spatially-explicit, agent-based model designed to simulate the spread of chronic wasting disease (CWD) in Indiana’s white-tailed deer populations.

Peer reviewed The Archaeological Sampling Experimental Laboratory (tASEL)

Isaac Ullah | Published Friday, March 11, 2022 | Last modified Wednesday, June 01, 2022

The Archaeological Sampling Experimental Laboratory (tASEL) is an interactive tool for setting up and conducting experiments about sampling strategies for archaeological excavation, survey, and prospection.

CRESY-I

Cara Kahl | Published Friday, July 08, 2011 | Last modified Saturday, April 27, 2013

CRESY-I stands for CREativity from a SYstems perspetive, Model I. This is the base model in a series designed to describe a systems approach to creativity in terms of variation, selection and retention (VSR) subprocesses.

FLOSSSim: An Agent-Based Model of the Free/Libre Open Source Software (FLOSS) Development Process

Nicholas Radtke | Published Saturday, December 31, 2011 | Last modified Saturday, April 27, 2013

An agent-based model of the Free/Libre Open Source Software (FLOSS) development process designed around agents selecting FLOSS projects to contribute to and/or download.

We used a computer simulation to measure how well different network structures (fully connected, small world, lattice, and random) find and exploit resource peaks in a variable environment.

Homing pigeon model

Gudrun Wallentin | Published Saturday, October 29, 2016

This model represents the flight paths of a flock of homing pigeons according to their flocking-, orientation- and leadership behaviour.

Modeling Personal Carbon Trading with ABM

Roman Seidl | Published Friday, December 07, 2018 | Last modified Thursday, July 29, 2021

A simulated approach for Personal Carbon Trading, for figuring out what effects it might have if it will be implemented in the real world. We use an artificial population with some empirical data from international literature and basic assumptions about heterogeneous energy demand. The model is not to be used as simulating the actual behavior of real populations, but a toy model to test the effects of differences in various factors such as number of agents, energy price, price of allowances, etc. It is important to adapt the model for specific countries as carbon footprint and energy demand determines the relative success of PCT.

This is an Agent Based Model of a generic food chain network consisting of stylized individuals representing producers, traders, and consumers. It is developed to: 1/ to describe the dynamically changing disaggregated flows of crop items between these agents, and 2/ to be able to explicitly consider agent behavior. The agents have implicit personal objectives for trading. Resilience and efficiency are quantified using the ascendency concept by linking these to the fraction of fulfillment of the overall explicit objective to have all consumers meet their food requirement. Different types of network structures in combination with different agent interaction types under different types of stylized shocks can be simulated.

Displaying 10 of 950 results for "Rolf Anker Ims" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept