Computational Model Library

This thesis presents an abstract spatial simulation model of the Maya Central Lowlands coupled human and natural system from 1000 BCE to the present day. It’s name is the Climatically Heightened but Anothropogenically Achieved Historical Kerplunk model (CHAAHK). The simulation features features virtual human groups, population centers, transit routes, local resources, and imported resources. Despite its embryonic state, the model demonstrates how certain anthropogenic characteristics of a landscape can interact with externally induced trauma and result in a prolonged period of relative sociopolitical uncomplexity. Analysis of batch simulation output suggests decreasing empirical uncertainties about ancient wetland modification warrants more investment. This first submission of CHAAHK’s code represents the simulation’s implementation that was featured in the author’s master’s thesis.

A simple agent-based spatial model of the economy

Bernardo Alves Furtado Isaque Daniel Rocha Eberhardt | Published Thu Mar 10 18:26:16 2016 | Last modified Tue Nov 22 15:08:38 2016

The modeling includes citizens, bounded into families; firms and governments; all of them interacting in markets for goods, labor and real estate. The model is spatial and dynamic.

IDEAL

Arika Ligmann-Zielinska | Published Thu Aug 7 02:40:31 2014

IDEAL: Agent-Based Model of Residential Land Use Change where the choice of new residential development in based on the Ideal-point decision rule.

A test-bed ecological model

Bruce Edmonds | Published Sun May 4 13:22:47 2014

This is a multi-patch meta-population ecological model. It intended as a test-bed in which to test the impact of humans with different kinds of social structure.

Human mate choice is a complex system

Paul Smaldino Jeffrey C Schank | Published Fri Feb 8 19:17:22 2013 | Last modified Sat Apr 27 20:18:34 2013

A general model of human mate choice in which agents are localized in space, interact with close neighbors, and tend to range either near or far. At the individual level, our model uses two oft-used but incompletely understood decision rules: one based on preferences for similar partners, the other for maximally attractive partners.

Feedback Loop Example: Wildland Fire Spread

James Millington | Published Fri Dec 21 12:26:52 2012 | Last modified Sat Apr 27 20:18:32 2013

This model is a replication of that described by Peterson (2002) and illustrates the ‘spread’ feedback loop type described in Millington (2013).

Feedback Loop Example: Forest Resource Transport

James Millington | Published Fri Dec 21 11:11:07 2012 | Last modified Sat Apr 27 20:18:32 2013

This model illustrates a positive ‘transport’ feedback loop in which lines with different resistance to flows of material result in variation in rates of change in linked entities.

Feedback Loop Example: Vegetation Patch Growth

James Millington | Published Thu Dec 20 19:02:47 2012 | Last modified Sat Apr 27 20:18:32 2013

This model illustrates a positive ‘growth’ feedback loop in which the areal extent of an entity increases through time.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.