Computational Model Library

Peer reviewed CHIME ABM of Hurricane Evacuation

Sean Bergin C Michael Barton Joshua Watts Joshua Alland Rebecca Morss | Published Mon Oct 18 18:31:05 2021 | Last modified Tue Jan 4 16:51:36 2022

The Communicating Hazard Information in the Modern Environment (CHIME) agent-based model (ABM) is a Netlogo program that facilitates the analysis of information flow and protective decisions across space and time during hazardous weather events. CHIME ABM provides a platform for testing hypotheses about collective human responses to weather forecasts and information flow, using empirical data from historical hurricanes. The model uses real world geographical and hurricane data to set the boundaries of the simulation, and it uses historical hurricane forecast information from the National Hurricane Center to initiate forecast information flow to citizen agents in the model.

This model implements a combined Protective Action Decision Model (PADM) and Protection Motivation Theory (PAM) model for human decision making regarding hazard mitigations. The model is developed and integrated into the MASON modeling framework. The ABM implements a hind-cast of Hurricane Sandy’s damage to Sea Bright, NJ and homeowner post-flood reconstruction decisions. It was validated against FEMA damage assessments and post-storm surveys (O’Neil 2017).

Peer reviewed Emergence of Organizations out of Garbage Can Dynamics

Guido Fioretti | Published Mon Apr 20 22:44:34 2020 | Last modified Sun Apr 26 12:54:56 2020

The Garbage Can Model of Organizational Choice (GCM) is a fundamental model of organizational decision-making originally propossed by J.D. Cohen, J.G. March and J.P. Olsen in 1972. In their model, decisions are made out of random meetings of decision-makers, opportunities, solutions and problems within an organization.
With this model, these very same agents are supposed to meet in society at large where they make decisions according to GCM rules. Furthermore, under certain additional conditions decision-makers, opportunities, solutions and problems form stable organizations. In this artificial ecology organizations are born, grow and eventually vanish with time.

Peer reviewed The Garbage Can Model of Organizational Choice

Guido Fioretti | Published Mon Apr 20 21:34:57 2020 | Last modified Thu Apr 23 18:55:40 2020

The Garbage Can Model of Organizational Choice is a fundamental model of organizational decision-making originally proposed by J.D. Cohen, J.G. March and J.P. Olsen in 1972. In the 2000s, G. Fioretti and A. Lomi presented a NetLogo agent-based interpretation of this model. This code is the NetLogo 6.1.1 updated version of the Fioretti-Lomi model.

This is a series of simulations of binary group decisions and the outcomes applied to a generalized version of Price’s Equation for system fitness.

Peer reviewed CHIME ABM Hurricane Evacuation Model

Joshua Watts | Published Fri Mar 3 18:13:53 2017 | Last modified Wed May 29 19:07:52 2019

The CHIME ABM explores information distribution networks and agents’ protective decision making in the context of hurricane landfall.

SimPLS - The PLS Agent

Iris Lorscheid Sandra Schubring Matthias Meyer Christian Ringle | Published Mon Apr 18 09:50:36 2016 | Last modified Tue May 17 11:35:16 2016

The simulation model SimPLS shows an application of the PLS agent concept, using SEM as empirical basis for the definition of agent architectures. The simulation model implements the PLS path model TAM about the decision of using innovative products.

Land-Livelihood Transitions

Nicholas Magliocca Daniel G Brown Erle C Ellis | Published Mon Sep 9 20:21:13 2013 | Last modified Fri Sep 13 14:25:53 2013

Implemented as a virtual laboratory, this model explores transitions in land-use and livelihood decisions that emerge from changing local and global conditions.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.