Displaying 10 of 36 results behavior clear filters
My interests are focused on the development of new methodologies capable of exploring the complex relations between time, space and human behavior. Simulation, game theory and spatial analysis are some of the techniques that I use to explore different research questions, from the relation between environment and culture to the evolution of warfare.
I’m also the project manager of Pandora, an open-source ABM platform specifically designed for executing large scale simulations in High-Performance Computing environments.
Andrew Bell (Ph.D. 2010, Michigan) was a Research Fellow in the Environment and Production Technology Division at the International Food Policy Research Institute (IFPRI) in Washington, DC. His current research portfolio focuses on the use of field instruments – such as discrete choice experiments, framed field experiments, randomized control trials – to inform behavior in agent-based models of coupled human-natural systems. Prior to this post, Andrew was a post-doctoral research fellow at The Earth Institute at Columbia University, where he focused on developing applications for paleo-climate histories.
I am currently Associate Professor of Organizational Cognition and Director of the Research Centre for Computational & Organisational Cognition at the Department of Language and Communication, University of Southern Denmark, Slagelse. My current research efforts are on socially-based decision making, agent-based modeling, cognitive processes in organizations and corporate social responsibility. He is author of more than 50 articles and book chapters, the monograph Extendable Rationality (2011), and he recently edited Agent-Based Simulation of Organizational Behavior with M. Neumann (2016).
My simulation research focuses on the applications of ABM to organizational behavior studies. I study socially-distributed decision making—i.e., the process of exploiting external resources in a social environment—and I work to develop its theoretical underpinnings in order to to test it. A second stream of research is on how group dynamics affect individual perceptions of social responsibility and on the definition and measurement of individual social responsibility (I-SR).
Smarzhevskiy Ivan, born 1961, graduated from the Faculty of Mechanics and Mathematics of Moscow State University in 1983. Ph.D. in Economic Sciences since 2000.
Research interests: individual and collective behavior in the organization, decision making, sociology of small groups.
decision making, sociology of small groups, agent based models
Volker Grimm currently works at the Department of Ecological Modelling, Helmholtz-Zentrum für Umweltforschung. Volker does research in ecology and biodiversity research.
How to model it: Ecological models, in particular simulation models, often seem to be formulated ad hoc and only poorly analysed. I am therefore interested in strategies and methods for making ecological modelling more coherent and efficient. The ultimate aim is to develop preditive models that provide mechanstic understanding of ecological systems and that are transparent and structurally realistic enough to support environmental decision making.
Pattern-oriented modelling: This is a general strategy of using multiple patterns observed in real systems as multiple criteria for chosing model structure, selecting among alternative submodels, and inversely determining entire sets of unknown model parameters.
Individual-based and agent-based modelling: For many, if not most, ecological questions individual-level aspects can be decisive for explaining system-level behavior. IBM/ABMs allow to represent individual heterogeneity, local interactions, and/or adaptive behaviour
Ecological theory and concepts: I am particularly interested in exploring stability properties like resilience and persistence.
Modelling for ecological applications: Pattern-oriented modelling allows to develop structurally realistic models, which can be used to support decision making and the management of biodiversity and natural resources. Currently, I am involved in the EU project CREAM, where a suite of population models is developed for pesticide risk assessment.
Standards for model communication and formulation: In 2006, we published a general protocol for describing individual- and agent-based models, called the ODD protocol (Overview, Design concepts, details). ODD turned out to be more useful (and needed) than we expected.
Applying agent-based models to archaeological data, using modern ethnoarchaeological data as an analog for behavior.
Electrical and Computer Engineer (NTU, Athens), M.Sc. and Ph.D. on Artificial Intelligence (Univ. Paris VI, France). Formerly senior researcher in the Institute of Communication and Computer Systems (NTU, Athens). I have taught a variety of courses on intelligent, complex and biological systems and cognitive science. I have participated in numerous national and european R&D projects and I have authored about a hundred articles in journals, books and conference proceedings, at least half of them as a single author. I am frequent reviewer for journals, conferences and research grants. My research interests lie on the intersection of biological, complex and cognitive systems and applications.
Area: Complex Biological, Social and Sociotechnical Systems
Specific focus: Origins of intelligent behavior
Senior (Tenure-Track) Assistant Professor in Work and Organizational Psychology (WOP) at the Human Sciences Department of Verona University. My expertise lies in organizational behavior, individual differences and decision-making at work, and social dynamics in the applied psychology field. In the field of fundamental research my studies explore the role of individual antecedents (e.g., Personality traits, Risk attitudes, etc.) in relation to classic I/O models (e.g., Job Demands-Resources model, Effort-Reward model, etc.). My applied research focuses on the development of interventions and policies for enhancing decision-making, and in turn well-being and job performance. Finally, in industrial research, my research aims to better integrate cognitive and behavioral theories (e.g., Theory of Planned Behavior, Prospect theory, etc.) for designing predictive models – based on agents – of social and organizational behaviors.
My research focuses pn the intersection between game theory, social networks, and multi-agent simulations. The objectives of this scientific endeavor are to inform policy makers, generate new technological applications, and bring new insight into human and non-human social behavior. My research focus is on the transformation of cultural conventions, such as signaling and lexical forms, and on many cell models models of stem cell derived clonal colony.
Because the models I analyze are formally defined using game theory and network theory, I am able to approach them with different methods that range from stochastic process analysis to multi-agent simulations.
I have been working in the software implementation of different kinds of complex networks inspired in real-life populations. My software may be classified on several categories: complex networks, Aedes aegypti development, dengue epidemics, cultural behavior of populations. I am also researching in education of Deaf people in Colombia.
Displaying 10 of 36 results behavior clear filters