Displaying 8 of 58 results for "David P Wilson" clear search
Isaac IT Ullah, PhD, (Arizona State University 2013) Dr. Ullah is a computational archaeologist who employs GIS and simulation modeling to understand the long-term dynamics of humans and the Earth System. Dr. Ullah is particularly interested in the social and environmental changes surrounding the advent of farming and animal husbandry. His focus is on Mediterranean and other semi-arid landscapes, and he conducts fieldwork in Jordan, Italy, and Kazakhstan. His field work includes survey for and excavation of early agricultural sites as well as geoarchaeological analyses of anthropogenic landscapes. His specialties include landscape evolution, complex adaptive systems science, computational methods, geospatial analysis, and imagery analysis.
Computational Archaeology, Food Production, Forager-Farmer transition, Neolithic, Agro-pastoralism, Erosion Modeling, Anthropogenic Landscapes, Geoarchaeology, Modeling and Simulation, GIS, Imagery Analysis, ABM, Mediterranean
Leigh Tesfatsion received the Ph.D. degree in economics from the University of Minnesota, Mpls., in 1975, with a minor in mathematics. She is Research Professor of Economics, Professor Emerita of Economics, and Courtesy Research Professor of Electrical & Computer Engineering, all at Iowa State University. Her principal current research areas are electric power market design and the development of Agent-based Computational Economics (ACE) platforms for the performance testing of these designs. She is the recipient of the 2020 David A. Kendrick Distinguished Service Award from the Society for Computational Economics (SCE) and an IEEE Senior Member. She has served as guest editor and associate editor for a number of journals, including the IEEE Transactions on Power Systems, the IEEE Transactions on Evolutionary Computation, the Journal of Energy Markets, the Journal of Economic Dynamics and Control, the Journal of Public Economic Theory, and Computational Economics. Online Short Bio
Agent-based computational economics (ACE); development and use of ACE test beds for the study of electric power market operations; development and use of ACE test beds for the study of water, energy, and climate change
I am currently Associate Professor of Organizational Cognition and Director of the Research Centre for Computational & Organisational Cognition at the Department of Language and Communication, University of Southern Denmark, Slagelse. My current research efforts are on socially-based decision making, agent-based modeling, cognitive processes in organizations and corporate social responsibility. He is author of more than 50 articles and book chapters, the monograph Extendable Rationality (2011), and he recently edited Agent-Based Simulation of Organizational Behavior with M. Neumann (2016).
My simulation research focuses on the applications of ABM to organizational behavior studies. I study socially-distributed decision making—i.e., the process of exploiting external resources in a social environment—and I work to develop its theoretical underpinnings in order to to test it. A second stream of research is on how group dynamics affect individual perceptions of social responsibility and on the definition and measurement of individual social responsibility (I-SR).
http://learnmem.cshlp.org/content/27/1.cover-expansion
(Cover simulation using NetLogo, January 2020)
Enver Miguel Oruro, Grace V.E. Pardo, Aldo B. Lucion, Maria Elisa Calcagnotto and Marco A. P. Idiart. Maturation of pyramidal cells in anterior piriform cortex may be sufficient to explain the end of early olfactory learning in rats. Learn. Mem. 2020. 27: 20-32 © 2020 Oruro et al.; Published by Cold Spring Harbor Laboratory Press
http://learnmem.cshlp.org/content/27/12.cover-expansion
(paper using NetLogo, December 2020)
Enver Miguel Oruro, Grace V.E. Pardo, Aldo B. Lucion, Maria Elisa Calcagnotto and Marco A. P. Idiart. The maturational characteristics of the GABA input in the anterior piriform cortex may also contribute to the rapid learning of the maternal odor during the sensitive period Learn. Mem. 2020. 27: 493-502 © 2020 Oruro et al.; Published by Cold Spring Harbor Laboratory Press
Enver Oruro, BA Psych. PhD(s).
Computational Psychologist
[email protected]
https://br.linkedin.com/in/enveroruro
Neurocomputational and Language Processing Laboratory, Institute of Physics/ UFRGS
Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry/ UFRGS
Meeting Organization
2009 First Meeting on Complex Systems -Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima
2010 Second Meeting on Complex Systems - College of Psychologists of Peru / Colegio de Psicólogos del Perú (CPsP) Lima
2012 3rd Meeting on Complex Systems – Computational Social Psychology, /Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima February 2012 https://www.comses.net/events/185/
http://www.neurocienciaperu.org/home/3ra-reunion-de-sistemas-complejos-psicologia-social-computacional
2012 4th Meeting on Complex Systems – Cognotecnology and Cognitive Science, Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima July 2012 https://www.comses.net/events/212/
2014 5th Meeting on Complex Systems – Complexity Roadmap. The Imperial City of the Incas, Cusco, April. https://www.comses.net/events/312/
2015 Chair of “e-session on Neuroscience and Behavior” UNESCO UniTwin CS-DC’15
2015 Chair of “e-session on Social Psychology” UNESCO UniTwin CS-DC’15
CS-DC’15 (Complex Systems Digital Campus ’15 – World e-Conference) is organizing the e-satellites of CCS’15, the international Conference on Complex Systems. It is devoted to all scientists involved in the transdisciplinary challenges of complex systems, crossing theoretical questions with experimental observations of multi-level dynamics. CCS’15 is organized by the brand new ASU-SFI Center for Biosocial Complex Systems. Arizona State University, (USA) from Sept 28 to Oct 2, 2015, in close collaboration with the Complex Systems Society and the Santa Fe Institute. from http://cs-dc-15.org/
2018 Seminar in “Mother-Infant Attachment and Supercomputing”, NY. USA and Porto Alegre, Brazil, August 09. https://www.comses.net/events/499/
2019 Seminar in Experimental and Computational Studies on Mother-Infant Relationship October 8 and 15, 2019 ICBS, /Determine the neural pathways by which the nervous system of the neonates establish attachment with their mothers is a problem that has motivated hypothesis and experiments at several scale levels, from neurotransmission to ethological level. UFRGS, Porto Alegre, Brazil. https://www.comses.net/events/549/
2020 Seminar in Maternal Infant Relationship Studies: Neuroscience and Artificial Intelligence March 7 and 9
Goals 1. Discuss a Roadmap for mother-Infant relationship research in the framework of the UNESCO Complex System Digital Campus project. https://www.comses.net/events/570/ https://sites.google.com/view/envermiguel/seminar-in-maternal-infant-relationship-studies?read_current=1
https://drive.google.com/file/d/1-FVQXBXy4RLKIQA-RBx3KFLJxyBsnyCW/view?usp=sharing
Linea de investigacion: Estrategias de modelamiento en Psicobiologia y Psicologia Social
/ Linea estrategica 1: bases biologicas de la cognicion social desde sistemas complejos
The Global Resource Observatory (GRO)
The Global Resource Observatory is largest single research project being undertaken at the GSI, it investigates how the scarcity of finite resources will impact global social and political fragility in the short term. The ambitious three year project, funded by the Dawe Charitable Trust, will enable short term decision making to account for ecological and financial constraints of a finite planet.
GRO will include an open source multidimensional model able to quantify the likely short term interactions of the human economy with the carrying capacity of the planet and key scarce resources. The model will enable exploration of the complex interconnections between the resource availability and human development, and provides projections over the next 5 years.
Data and scenarios will be geographically mapped to show the current and future balance and distribution of resources across and within countries. The GRO tool will, for the first time, enable the widespread integration of the implications of depleting key resource into all levels of policy and business decision-making.
As a data scientist, I employ a variety of ecoinformatic tools to understand and improve the sustainability of complex social-ecological systems. I also apply Science and Technology Studies lenses to my modeling processes in order to see potential ways to make social-ecological system management more just. I prefer to work collaboratively with communities on modeling: teaching mapping and modeling skills, collaboratively building data representations and models, and analyzing and synthesizing community-held data as appropriate. At the same time, I look for ways to create space for qualitative and other forms of knowledge to reside alongside quantitative analysis, using mixed and integrative methods.
Recent projects include: 1) Studying Californian forest dynamics using Bayesian statistical models and object-based image analysis (datasets included forest inventories and historical aerial photographs); 2) Indigenous mapping and community-based modeling of agro-pastoral systems in rural Zimbabwe (methods included GPS/GIS, agent-based modeling and social network analysis); 3) Supporting Tribal science and environmental management on the Klamath River in California using historical aerial image analysis of land use/land cover change and social networks analysis of water quality management processes; 4) Bayesian statistical modeling of community-collected data on human uses of Marine Protected Areas in California.
Sedar is a PhD student at the University of Leeds, department of Geography. He graduated in Computer Science at King’s College London 2018. From a very early stage of his degree, he focused on artificial intelligence planning implementations on drones in a search and rescue domain, and this was his first formal attempt to study artificial intelligence. He participated in summer school at Boğaziçi University in Istanbul working on programming techniques to reduce execution time. During his final year, he concentrated on how argumentation theory with natural language processing can be used to optimise political influence. In the midst of completing his degree, he applied to Professor Alison Heppenstall’s research proposal focusing on data analytics and society, a joint endeavour with the Alan Turing Institute and the Economic and Social Research Council. From 2018 - 2023 he will be working on his PhD at the Alan Turing Institute and Leeds Institute for Data Analytics.
Sedar will be focusing on data analytics and smart cities, developing a programming library to try simulate how policies can impact a small world of autonomous intelligent agents to try deduce positive or negative impact in the long run. If the impact is positive and this is conveyed collectively taking into consideration the agent’s health, happiness and other social characteristics then the policy can be considered. Furthermore, he will work on agent based modelling to solve and provide faster solutions to economic and social elements of society, establishing applied and theoretical answers. Some other interests are:
Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.
I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.
While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.
Displaying 8 of 58 results for "David P Wilson" clear search