Computational Model Library

Objective is to simulate policy interventions in an integrated demand-supply model. The underlying demand function links both sides. Diffusion proceeds if interactions distribute awareness (Epidemic effect) and rivalry reduces the market price (Probit effect). Endogeneity is given due to the fact that consumer awareness as well as their willingness-to-pay drives supply-side rivalry. Firm´s entry and exit decisions as well as quantity and price settings are driven by Cournot competition.

ABODE - Agent Based Model of Origin Destination Estimation

D Levinson | Published Mon Aug 29 18:01:08 2011 | Last modified Sat Apr 27 20:18:19 2013

The agent based model matches origins and destinations using employment search methods at the individual level.

A Computational Model of Workers Protest

Jae-Woo Kim | Published Fri May 13 03:00:08 2011 | Last modified Sat Apr 27 20:18:17 2013

We present an agent-based model of worker protest informed by Epstein (2002). Workers have varying degrees of grievance depending on the difference between their wage and the average of their neighbors. They protest with probabilities proportional to grievance, but are inhibited by the risk of being arrested – which is determined by the ratio of coercive agents to probable rebels in the local area. We explore the effect of similarity perception on the dynamics of collective behavior. If […]

The various technologies used inside a Dutch greenhouse interact in combination with an external climate, resulting in an emergent internal climate, which contributes to the final productivity of the greenhouse. This model examines how differing technology development styles affects the overall ability of a community of growers to approach the theoretical maximum yield.

This is the model for a paper that is based on a simulation model, programmed in Netlogo, that demonstrates changes in market structure that occur as marginal costs, demand, and barriers to entry change. Students predict and observe market structure changes in terms of number of firms, market concentration, market price and quantity, and average marginal costs, profits, and markups across the market as firms innovate. By adjusting the demand growth and barriers to entry, students can […]

A preliminary extension of the Hemelrijk 1996 model of reciprocal behavior to include feeding

Sean Barton | Published Mon Dec 13 19:40:05 2010 | Last modified Sat Apr 27 20:18:19 2013

A more complete description of the model can be found in Appendix I as an ODD protocol. This model is an expansion of the Hemelrijk (1996) that was expanded to include a simple food seeking behavior.

Alternative Fuel Design/Consumer Choice Model

Rosanna Garcia | Published Wed Sep 22 21:01:39 2010 | Last modified Sat Apr 27 20:18:21 2013

This is a model of the diffusion of alternative fuel vehicles based on manufacturer designs and consumer choices of those designs. It is written in Netlogo 4.0.3. Because it requires data to upload

Peer reviewed Umwelten Ants

Kit Martin | Published Thu Jan 15 16:19:41 2015 | Last modified Thu Aug 27 18:53:06 2015

Simulates impacts of ants killing colony mates when in conflict with another nest. The murder rate is adjustable, and the environmental change is variable. The colonies employ social learning so knowledge diffusion proceeds if interactions occur.

Friendship Games Rev 1.0

David Dixon | Published Fri Oct 7 22:58:33 2011 | Last modified Sat Apr 27 20:18:32 2013

A friendship game is a kind of network game: a game theory model on a network. This is a NetLogo model of an agent-based adaptation of “‘Friendship-based’ Games” by PJ Lamberson. The agents reach an equilibrium that depends on the strategy played and the topology of the network.

Patch choice model from Optimal Foraging Theory (Human Behavioral Ecology)

C Michael Barton | Published Sat Nov 22 19:11:16 2008 | Last modified Sat Apr 27 20:18:43 2013

NetLogo model of patch choice model from optimal foraging theory (human behavioral ecology).

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.