Displaying 10 of 262 results for "Oto Hudec" clear search
In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’
To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.
This paper investigates how collective action is affected when the interaction is driven by the underlying hierarchical structure of an organization, e.g., a company. The performance of collection action is measured as the rate of contribution to a public good, e.g., an organization’s objective.
My research aims to explore the potential of network science for the archaeological discipline. In my review work I confront the use of network-based methods in the archaeological discipline with their use in other disciplines, especially sociology and physics. In my archaeological work I aim to develop and apply network science techniques that show particular potential for archaeology. This is done through a number of archaeological case-studies: archaeological citation networks, visibility networks in Iron Age and Roman southern Spain, and tableware distribution in the Roman Eastern Mediterranean.
I am a University Academic Fellow (UAF) in the School of Geography at the University of Leeds. My research areas are agent-based modelling, decision making in complex systems, AI and multi-agent systems, urban analytics and housing markets. I obtained PhD in Economics from Iowa State University under supervisor Prof. Leigh Tesfatsion in 2014. I worked as a researcher at the James Hutton Institute in Aberdeen, Scotland between 2014 and 2019. I joined the University of Leeds as a UAF of Urban Analytics in 2019. I am originally from Shanghai, China.
My main research areas are agent-based modelling, urban analytics and complex decision making enabled by AI. I am interested in the bottom-up transition of complex urban systems under major socio-economic and environmental shocks, such as climate change and the fourth industrial revolution. I want to understand how cities as self-organised complex systems respond to external shocks and evolve under a constantly changing environment. In the past, I have looked at various aspects of urban systems, including the housing market, the labour market, transport and energy system. I am also interested in decision making in complex systems. For example, I have studied the decision to become a vegetarian/vegan under social influence. I have also looked at global food trade in a complex trade network and the resulting food and nutrition security. Recently, I am interested in applying AI algorithms especially reinforcement learning in multi-agent systems, including applications of AI in urban adaptation to climate change, housing market dynamics and criminal behaviour in an urban system.
I am a computational archaeologist with a strong background in humanities and social sciences, specialising in simulating socioecological systems from the past.
My main concern has been to tackle meaningful theoretical questions about human behaviour and social institutions and their role in the biosphere, as documented by history and archaeology. My research focuses specifically on how social behaviour reflects long-term historical processes, especially those concerning food systems in past small-scale societies. Among the aspects investigated are competition for land use between sedentary farmers and mobile herders (Angourakis et al. 2014; 2017), cooperation for food storage (Angourakis et al. 2015), origins of agriculture and domestication of plants (Angourakis et al. 2022), the sustainability of subsistence strategies and resilience to climate change (Angourakis et al. 2020, 2022). He has also been actively involved in advancing data science applications in archaeology, such as multivariate statistics on archaeometric data (Angourakis et al. 2018) and the use of computer vision and machine learning to photographs of human remains (Graham et al. 2020).
As a side, but not less important interest, I had the opportunity to learn about video game development and engage with professionals in Creative Industries. In one collaborative initiative, I was able to combine my know-how in both video games and simulation models (\href{https://doi.org/10.1007/978-3-030-92843-8_15}{Szczepanska et al. 2022}).
I am currently enrolled as a graduate student at UC3M, working towards a MS degree in Computational and Applied Mathematics. Upon completing my current program, my intention is to further my education in Applied Economics, with a specific focus on the intersection of Climate and Development Economics.
My research pursuits center around investigating the impacts of climate change on developing nations. Additionally, I am interested in studying the repercussions of fast fashion consumption, examining its effects on working conditions, the environment, and the overall well-being of individuals in the countries where these garments are manufactured. In my ongoing master’s thesis, I employ Agent-Based Modeling to simulate the attitudes of individual consumers towards fast fashion. The model captures behavioral shifts influenced by peers, social media, and governmental factors. This research aligns with my broader interests in comprehending public perspectives on global matters, underscoring the crucial influence of individual attitudes in confronting and finding solutions to these challenges.
Development Economics, Environmental Economics, Sustainability, Environment, Climate change, Climate justice, Energy, Clean Energy, Renewable Energy, Complex systems
Corinna is a lecturer in the Department of Sociology. She joined the Centre for Research in Social Simulation at the in August 2008 as a Research Fellow. Her academic background is in Philosophy (LSE, BSc MSc) and Computer Science (KCL,PhD), where her PhD Instinct for Detection developed a logic for abductive reasoning.
Currently Corinna is the PI on an AHRC Research Grant on collective reasoning in agent-based modelling, titled Collective Reasoning as a Moral Point of View. Her research interests are decision mechanisms, in particular collective decision-making, context dependency of decisions and methodological and epistemological aspects of agent-based modelling and social simulation. She has applied collective decision making to the analysis to the weakening of the Mafia in Southern Italy within the GLODERS project and published a book Modelling Norms, co-authored with Nigel Gilbert, providing a systematic analysis of the contribution of agent-based modelling to the study of social norms and deviant behaviour. Recently Corinna has been developing a teaching stream within CRESS with a periodically running short course Agent-based Modelling for the Social Scientist and the MSc Social Science and Complexity.
About me
Name: Dr. Julia Kasmire
Position: Post-doctoral Research Fellow
Where: UK Data Services and Cathie Marsh Institute at the University of Manchester.
Short Bio
2004 - BA in Linguistics from the University of California in Santa Cruz, including college honours, departmental honours and one year of study at the University of Barcelona.
2008 - MSc in the Evolution of Language and Cognition from the University of Edinburgh, with a thesis on the effects of various common simulated population features used when modelling language learning agents.
2015 - PhD from Faculty of Technology, Policy and Management at the Delft University of Technology under the supervision of Prof. dr. ig. Margot Wijnen, Prof. dr. ig. Gerard P.J. Dijkema, and Dr. ig. Igor Nikolic. My PhD thesis and propositions can be found online, as are my publications and PhD research projects (most of which addressed how to study transitions to sustainability in the Dutch horticultural sector from a computational social science and complex adaptive systems perspective).
Additional Resources
Many of the NetLogo models I that built or used can be found here on my CoMSES/OpenABM pages.
My ResearchGate profile and my Academia.org profile provide additional context and outputs of my work, including some data sets, analytical resources and research skills endorsements.
My LinkedIn profile contains additional insights into my education and experience as well as skills and knowledge endorsements.
I try to use Twitter to share what is happening with my research and to keep abreast of interesting discussions on complexity, chaos, artificial intelligence, evolution and some other research topics of interest.
You can find my SCOPUS profile and my ORCID profile as well.
Complex adaptive systems, sustainability, evolution, computational social science, data science, empirical computer science, industrial regeneration, artificial intelligence
BIGSSS-Departs PhD Fellow
Bremen International Graduate School of Social Sciences / Jacobs University (Germany)
PhD project: Residential Segregation and Intergenerational Immigrant Integration: A Schelling-Esser Model
Italian PhD fellow, fond of social complexity and agent-based modeling, applied to residential segregation and integration processes
Research Interests: Agent-based modeling, migrant integration, residential segregation
Shibari is a form of interaction between people and besides an exotic spectacle, it is a series of strange but pleasant kinesthetic sensations. Intimate is not equally depraved, but means that during the shibari ropes process, the participants in the session show emotions that are not customary to experience in public: tears, laughter and groans of pleasure.
Displaying 10 of 262 results for "Oto Hudec" clear search