Community

C Merdes Member since: Wednesday, August 10, 2016

Bachelor of Arts (Philosophy and Computer Science), Master of Science (Computerscience)

I am a formally oriented philosopher, applying computational techniques to questions of social epistemology and political philosophy. My current research is focused on explanations and interventions for phenomena of collective irrationality.

Shelby Manney Member since: Friday, September 26, 2014

BA - English, BS - Anthropology (Archaeoinformatics - GIS, Applied Stats, Data Mang.,CRM CERT), BFA - Music, BA - Writing & Rhetoric, MA - Technical, Professional, & Science Writing (TPSW - Cert), MS - Cultural Studies in Applied Sciences (Philosophy of Science - Archaeology/Semiotics Focus), MA - Anthropology

General Question:
Without Central Control is self organization possible?

Specific Case:

Considering the seemingly preplanned, densely aggregated communities of the prehistoric Puebloan Southwest, is it possible that without centralized authority (control), that patches of low-density communities dispersed in a bounded landscape could quickly self-organize and construct preplanned, highly organized, prehistoric villages/towns?

Xiaotian Wang Member since: Friday, March 28, 2014

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

James Taylor Member since: Thursday, September 19, 2013

BS

Secondary education, agent-based modeling and computational science in education

Savi Maharaj Member since: Thursday, August 15, 2013

PhD (Computer Science, Edinburgh), MSc (Computer Systems Engineering, Edinburgh), BSc (Maths and Computer Science, University of the West Indies)

Agent-based modeling of human behaviour; virtual experiments

L Bollinger Member since: Wednesday, June 05, 2013

MSc Industrial Ecology

Using modeling and simulation to support the development of resilient infrastructures

Anthony Di Fiore Member since: Friday, August 24, 2012 Full Member Reviewer

Ph.D. Biological Anthropology

I conduct long-term behavioral and ecological field research on several species in the primate community of Amazonian Ecuador to investigate the ways in which ecological conditions (such as the abundance and distribution of food resources) and the strategies of conspecifics together shape primate behavior and social relationships and ultimately determine the kinds of societies we see primates living in. This is a crucial and central focus in evolutionary anthropology, as understanding the ways in which behavior and social systems are shaped by environmental pressures is a fundamental part of the discipline.

I complement my field studies with molecular genetic laboratory work and agent-based simulation modeling in order to address issues that are typically difficult to explore through observational studies alone, including questions about dispersal behavior, gene flow, mating patterns, population structure, and the fitness consequences of individual behavior. In collaboration with colleagues, I have also started using molecular techniques to investigate a number of broader questions concerning the evolutionary history, social systems, and ecological roles of various New World primates.

ben_davies Member since: Friday, March 30, 2012

MA - University of Auckland - Anthropology, BA - University of Hawaii - Anthropology

-Use of models, including agent-based models, in understanding the formation of surface archaeological deposits in arid Australia
-Individual-based modelling of resource use on marginal islands in Polynesian prehistory
-Individual-based modelling of the influence of serial voyaging events on body proportions in Remote Oceania
-Discrete event simulation of early horticultural production in New Zealand

troukny Member since: Saturday, February 18, 2012

Civil Engineer in Computer Science

Using the Complex System science paradigm to open new ways of assessing the Systemic Risk in Financial Systems

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.