Community

James Taylor Member since: Thursday, September 19, 2013

BS

Secondary education, agent-based modeling and computational science in education

Enver Miguel Oruro Puma Member since: Tuesday, March 23, 2010 Full Member Reviewer

BA Psychology


http://learnmem.cshlp.org/content/27/1.cover-expansion
(Cover simulation using NetLogo, January 2020)
Enver Miguel Oruro, Grace V.E. Pardo, Aldo B. Lucion, Maria Elisa Calcagnotto and Marco A. P. Idiart. Maturation of pyramidal cells in anterior piriform cortex may be sufficient to explain the end of early olfactory learning in rats. Learn. Mem. 2020. 27: 20-32 © 2020 Oruro et al.; Published by Cold Spring Harbor Laboratory Press


http://learnmem.cshlp.org/content/27/12.cover-expansion
(paper using NetLogo, December 2020)
Enver Miguel Oruro, Grace V.E. Pardo, Aldo B. Lucion, Maria Elisa Calcagnotto and Marco A. P. Idiart. The maturational characteristics of the GABA input in the anterior piriform cortex may also contribute to the rapid learning of the maternal odor during the sensitive period Learn. Mem. 2020. 27: 493-502 © 2020 Oruro et al.; Published by Cold Spring Harbor Laboratory Press

Enver Oruro, BA Psych. PhD(s).
Computational Psychologist
[email protected]
https://br.linkedin.com/in/enveroruro
Neurocomputational and Language Processing Laboratory, Institute of Physics/ UFRGS
Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry/ UFRGS

Meeting Organization

2009 First Meeting on Complex Systems -Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima

2010 Second Meeting on Complex Systems - College of Psychologists of Peru / Colegio de Psicólogos del Perú (CPsP) Lima

2012 3rd Meeting on Complex Systems – Computational Social Psychology, /Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima February 2012 https://www.comses.net/events/185/
http://www.neurocienciaperu.org/home/3ra-reunion-de-sistemas-complejos-psicologia-social-computacional
2012 4th Meeting on Complex Systems – Cognotecnology and Cognitive Science, Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima July 2012 https://www.comses.net/events/212/

2014 5th Meeting on Complex Systems – Complexity Roadmap. The Imperial City of the Incas, Cusco, April. https://www.comses.net/events/312/

2015 Chair of “e-session on Neuroscience and Behavior” UNESCO UniTwin CS-DC’15
2015 Chair of “e-session on Social Psychology” UNESCO UniTwin CS-DC’15
CS-DC’15 (Complex Systems Digital Campus ’15 – World e-Conference) is organizing the e-satellites of CCS’15, the international Conference on Complex Systems. It is devoted to all scientists involved in the transdisciplinary challenges of complex systems, crossing theoretical questions with experimental observations of multi-level dynamics. CCS’15 is organized by the brand new ASU-SFI Center for Biosocial Complex Systems. Arizona State University, (USA) from Sept 28 to Oct 2, 2015, in close collaboration with the Complex Systems Society and the Santa Fe Institute. from http://cs-dc-15.org/

2018 Seminar in “Mother-Infant Attachment and Supercomputing”, NY. USA and Porto Alegre, Brazil, August 09. https://www.comses.net/events/499/

2019 Seminar in Experimental and Computational Studies on Mother-Infant Relationship October 8 and 15, 2019 ICBS, /Determine the neural pathways by which the nervous system of the neonates establish attachment with their mothers is a problem that has motivated hypothesis and experiments at several scale levels, from neurotransmission to ethological level. UFRGS, Porto Alegre, Brazil. https://www.comses.net/events/549/

2020 Seminar in Maternal Infant Relationship Studies: Neuroscience and Artificial Intelligence March 7 and 9
Goals 1. Discuss a Roadmap for mother-Infant relationship research in the framework of the UNESCO Complex System Digital Campus project. https://www.comses.net/events/570/ https://sites.google.com/view/envermiguel/seminar-in-maternal-infant-relationship-studies?read_current=1

Linea de investigacion: Estrategias de modelamiento en Psicobiologia y Psicologia Social
/ Linea estrategica 1: bases biologicas de la cognicion social desde sistemas complejos

Savi Maharaj Member since: Thursday, August 15, 2013

PhD (Computer Science, Edinburgh), MSc (Computer Systems Engineering, Edinburgh), BSc (Maths and Computer Science, University of the West Indies)

Agent-based modeling of human behaviour; virtual experiments

Nanda Wijermans Member since: Monday, October 11, 2010 Full Member Reviewer

In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’

To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.

Andrew White Member since: Tuesday, July 31, 2012 Full Member Reviewer

PhD Anthropology, MA Anthropology, BA Anthropology; BA Journalism

I am an anthropological archaeologist with broad interests in hunter-gatherers, lithic technology, human evolution, and complex systems theory. I am particularly interested in understanding processes of long term social, evolutionary, and adaptational change among hunter-gatherers, specifically by using approaches that combine archaeological data, ethnographic data, and computational modeling.

Gul Deniz Salali Member since: Sunday, November 15, 2015 Full Member

PhD in Biological Anthropology, UCL

I studied Molecular Biology and Genetics at Istanbul Technical University. During my undergraduate studies I became interested in the field of Ecology and Evolution and did internships on animal behaviour in Switzerland and Ireland. I then went on to pursue a 2-year research Master’s in Evolutionary Biology (MEME) funded by the European Union. I worked on projects using computer simulations to investigate evolution of social complexity and human cooperation. I also did behavioural economics experiments on how children learn social norms by copying others. After my Master’s, I pursued my dream of doing fieldwork and investigating human societies. I did my PhD at UCL, researching cultural evolution and behavioural adaptations in Pygmy hunter-gatherers in the Congo. During my PhD, I was part of an inter-disciplinary Hunter-Gatherer Resilience team funded by the Leverhulme Trust. I obtained a postdoctoral research fellowship from British Academy after my PhD. I am currently working as a British Academy research fellow and lecturer in Evolutionary Anthropology and Evolutionary Medicine at UCL.

  • Social learning and cultural evolution
  • Hunter-gatherers
  • Evolutionary medicine

Noha Nagi Member since: Tuesday, October 28, 2014

Bachelor in statistics, Preparing MSC in social science computing

Shaker Khanfar Member since: Friday, May 17, 2013

BA

I’m trying to fing a simulation for Multiagent system based search engine by NetLogo

upton9265 Member since: Wednesday, January 04, 2012

BS Physics, MS Operations Research, MS Physics, Applied Scientist Systems Engineering

Our overriding approach has been to advance the state-of-the-art in conducting large-scale simulation studies, by developing and disseminating experimental designs that facilitate the exploration of complex simulation models

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.