Displaying 10 of 113 results economics clear filters
My research centers on isolating how and to what extent political institutions themselves shape policy. I use computational modeling (agent-based and simulation) to gain theoretical leverage on the issue. This approach allows me to place groups of actors with given preferences into different institutional settings in order to gauge the effect of the rules of the game on political outcomes. Most of my research examines the ways in which legislative processes affect issues of political economy, such as income redistribution.
After being the economic development officer for the Little/Salmon Carmacks First Nation, Tim used all his spare time trying to determine a practical understanding of the events he witnessed. This led him to complexity, specifically human emergent behaviour and the evolutionary prerequisites present in human society. These prerequisites predicted many of the apparently immutable ‘modern problems’ in society. First, he tried disseminating the knowledge in popular book form, but that failed – three times. He decided to obtain PhD to make his ‘voice’ louder. He chose sociology, poorly as it turns out as he was told his research had ‘no academic value whatsoever’. After being forced out of University, he taught himself agent-based modelling to demonstrate his ideas and published his first peer-reviewed paper without affiliation while working as a warehouse labourer. Subsequently, he managed to interest Steve Keen in his ideas and his second attempt at a PhD succeeded. His most recent work involves understanding the basic forces generated by trade in a complex system. He is most interested in how the empirically present evolutionary prerequisites impact market patterns.
Economics, society, complexity, systems, ecosystem, thermodynamics, agent-based modelling, emergent behaviour, evolution.
ABM applied to socio-economic systems: opinion evolution, industry dynamics, spatial models of voting, diffusion of innovations, macroeconomic with microfoundations, etc.
Leigh Tesfatsion received the Ph.D. degree in economics from the University of Minnesota, Mpls., in 1975, with a minor in mathematics. She is Research Professor of Economics, Professor Emerita of Economics, and Courtesy Research Professor of Electrical & Computer Engineering, all at Iowa State University. Her principal current research areas are electric power market design and the development of Agent-based Computational Economics (ACE) platforms for the performance testing of these designs. She is the recipient of the 2020 David A. Kendrick Distinguished Service Award from the Society for Computational Economics (SCE) and an IEEE Senior Member. She has served as guest editor and associate editor for a number of journals, including the IEEE Transactions on Power Systems, the IEEE Transactions on Evolutionary Computation, the Journal of Energy Markets, the Journal of Economic Dynamics and Control, the Journal of Public Economic Theory, and Computational Economics. Online Short Bio
Agent-based computational economics (ACE); development and use of ACE test beds for the study of electric power market operations; development and use of ACE test beds for the study of water, energy, and climate change
Analyzing economic dynamics through game theory and agent based evolutionary models. My research topics go from dynamics of organizations to industrial dynamics, macroeconomic dynamics and economic policy analysis.
agent-based modeling
social science simulation
computational economics
Agent Based Modelling for Economics, Business and Scoail Sciences
The Global Resource Observatory (GRO)
The Global Resource Observatory is largest single research project being undertaken at the GSI, it investigates how the scarcity of finite resources will impact global social and political fragility in the short term. The ambitious three year project, funded by the Dawe Charitable Trust, will enable short term decision making to account for ecological and financial constraints of a finite planet.
GRO will include an open source multidimensional model able to quantify the likely short term interactions of the human economy with the carrying capacity of the planet and key scarce resources. The model will enable exploration of the complex interconnections between the resource availability and human development, and provides projections over the next 5 years.
Data and scenarios will be geographically mapped to show the current and future balance and distribution of resources across and within countries. The GRO tool will, for the first time, enable the widespread integration of the implications of depleting key resource into all levels of policy and business decision-making.
Tenured researcher @ government think-tank (IPEA) and CNPq (productivity grant - since 2014), complex modeler interested, data fan, transitional Python user, PhD. Background in urban analysis, economics, geography. From twitter.com/furtadobb
Agent-based modeling, urban policy, urban economics. Metropolis and municipalities analyses.
Displaying 10 of 113 results economics clear filters