Community

Displaying 10 of 102 results Agent-Based Modeling clear search

Muhammad Khurram Ali Member since: Sun, Jan 18, 2015 at 11:46 AM Full Member

Bachelor of Engineering in Mechanical Engineering, Master of Engineering in Industrial and Manufacturing Enginnering

Industrial Engineering, Multi-criteria Decision Making, Optimization Techniques, Global/International Facility Location, Agent-based Modeling

Kit Martin Member since: Thu, Jan 15, 2015 at 02:44 PM Full Member

B.A. History, Bard College, M.A. International Development Practice Humphrey School of Public Affairs, PhD. Northwestern, Learning Sciences

I have a strong background in building and incorporating agent-based simulations for learning. Throughout my graduate career, I have worked at the Center for Connected Learning and Computer Based Modeling (CCL), developing modeling and simulation tools for learning. In particular, we develop NetLogo, the gold standard agent-based modeling environment for learners around the world. In my dissertation work, I marry biology and computer science to teach the emergent principles of ant colonies foraging for food and expanding. The work builds on more than a decade of experience in ABM. I now work at the Center for the Science and the Schools as an Assistant Professor. We delivered a curriculum to teach about COVID-19, where I incorporated ABMs into the curriculum.

You can keep up with my work at my webpage: https://kitcmartin.com

Studying the negative externalities of networks, and the ways in which those negatives feedback and support the continuities.

Dehua Gao Member since: Mon, Jan 05, 2015 at 04:37 PM Full Member

**PROFESSIONS **

Associate Professor
School of Management Science and Engineering, Shandong Technology and Business University (Yantai 264005, P. R. China)

**EDUCATION BACKGROUDS **

Ph. D. Degree, 09/2009 – 07/2015
School of Economics and Management, Beihang University (P. R. China)

M. A. Degree, 09/2003 – 02/2006
The Institute of Systems Engineering, Dalian University of Technology (P. R. China)

B. A. Degree, 09/1999 – 07/2003
Department of Information and Control Engineering, Zhengzhou University of Light Industry (P. R. China)

**VISITING & SUMMER SCHOOLS **

Visiting Scholar at GECS – Research Group of Experimental and Computational Sociology (March, 2017 – February, 2018)
 Università degli Studi di Brescia (Italy)
 Co-supervisor: Professor Flaminio Squazzoni

Summer school in ‘Agent-based modeling for social scientists’ (September 4-8, 2017)
 University of Brescia, Italy
 Instructors: Flaminio Squazzoni, Simone Gabbriellini, Nicolas Payette, Federico Bianchi

The Santa Fe Institute’s Massive Open Online Course: Introduction to Agent-Based Modeling (Jun 5 – September 8, 2017)
 The Santa Fe Institute, Complexity Explore Web: abm.complexityexploer.org
 Instructors: Bill Rand

Summer school in ‘Complex systems and management’ (July 2-12, 2012)
 National Defense University, P. R. China
 Instructors: Xinjun Mao, Yongfang Liu, Dinghua Shi, Qiyue Cheng

Routine dynamics, Agent-based modeling, Computational social/organization science, Industrial systems engineering, etc.

John Bradford Member since: Tue, Nov 04, 2014 at 08:39 PM

Ph.D. Sociology, University of Tennessee

Currently working on agent-based modeling of wealth and income distributions; formalizing some of Luhmann’s theories of communication; modeling social norms; and modeling generative mechanisms of status hierarchies.

Davide Secchi Member since: Tue, Jul 08, 2014 at 10:58 PM Full Member

PhD in Business Administration

I am Professor of Management at Paris School of Business and have held positions at the University of Southern Denmark, Bournemouth University (UK), University of Wisconsin (US), and at the University of Insubria (Italy). My current research efforts are on socially-based decision making, agent-based modeling, cognitive processes in organizations and socially responsible behavior in organizations. With a coauthor network of 50 colleagues located in over 10 different countries, I have published 126 (as of 2025) among articles, book chapters, and books. The monograph Computational organizational cognition (2021, Emerald), and the edited Agent-Based Simulation of Organizational Behavior with M. Neumann (2016, Springer Nature) specifically target computational simulation research in the social sciences. The book How do I Develop an Agent-Based Model? (2022, Elgar) is the first specifically written for business and management scholars.

My simulation research focuses on the applications of ABM to organizational behavior studies. I study socially-distributed decision making—i.e., the process of exploiting external resources in a social environment—and I work to develop its theoretical underpinnings in order to to test it. A second stream of research is on how group dynamics affect individual perceptions of social responsibility and on the definition and measurement of individual social responsibility (I-SR).

Aaron Bramson Member since: Tue, Jul 01, 2014 at 12:36 PM Full Member

Ph.D. Philosophy and Political Science, University of Michigan, M.S. Mathematics, Northeastern University, B.S. Economics, University of Florida, B.A. Philosophy, University of Florida

Dr. Aaron Bramson is principal investigator of the AI Strategy Center of GA technologies in Tokyo, Japan, as well as an Affiliate Researcher in the Department of General Economics of Ghent University in Belgium. His research specialty is complexity science, especially methodologies for modeling complex systems. Research topics span across disciplines: measures of polarization and diversity, belief measure interoperability, integrating geospatial and network analyses for measuring walkability and neighborhood identification, and myriad applications in artificial intelligence and data visualization. He received his Ph.D. from the University of Michigan in a joint program with the departments of Political Science and Philosophy as well as an M.S. in Mathematics from Northeastern University.

Complex systems, agent-based modeling, social simulation, computational models, network models, network theory, methodology, philosophy of science, ontology, epistemology, ethics, artificial intelligence, big data analysis, geospatial data analysis,

Grant Snitker Member since: Mon, Apr 21, 2014 at 09:39 PM Full Member

Ph.D., Anthropology, Arizona State University

I am an environmental archaeologist, specializing in charcoal analysis, computational and analytical proxy modeling, and quantitative methods to understand the dynamic relationship between fire, humans, and long-term environmental change. I work primarily in the Western United States and the Western Mediterranean. I am passionate about our public lands and ensuring that everyone has access and opportunity to experience them.

Envrionmental Archaeology, Fire Ecology, GIS, Agent-based modeling, Geoarchaeology

Andrew Collins Member since: Fri, Apr 18, 2014 at 02:19 PM

MA, PhD, MSC, BA

Andrew J. Collins, Ph.D., is an associate professor at Old Dominion University in the Department of Engineering Management and Systems Engineering. He has a Ph.D. in Operations Research from the University of Southampton, and his undergraduate degree in Mathematics was from the University of Oxford. He has published over 80 peer-review articles. He has been the Principal Investigator on projects funded to the amount of approximately $5 million. Dr. Collins has developed several research simulations including an award-winning investigation into the foreclosure contagion that incorporated social networks.

Agent-based Modeling
Agent-based simulation
Cooperative Game Theory
Behavior modeling

Xiaotian Wang Member since: Fri, Mar 28, 2014 at 02:23 AM

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

Bernardo Furtado Member since: Mon, Jan 27, 2014 at 10:57 AM Full Member Reviewer

PhD Geosciences/Economics, MsC Geography, BA Architecture

Tenured researcher @ government think-tank (IPEA) and CNPq (productivity grant - since 2014), complex modeler interested, data fan, transitional Python user, PhD. Background in urban analysis, economics, geography. From twitter.com/furtadobb

Agent-based modeling, urban policy, urban economics. Metropolis and municipalities analyses.

Displaying 10 of 102 results Agent-Based Modeling clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept