Community

Displaying 10 of 108 results for "Emmanuel Mhike Hove" clear search

Tatiana Filatova Member since: Tue, Oct 04, 2011 at 08:57 AM Full Member

PhD (Cum Laude), Department of Water Engineering and Management, University of Twente, The Netherlands

I am Professor in Computational Resilience Economics at the University of Twente (the Netherlands), which I joined in 2010. In September 2017 I also joined University of Technology Sydney (Australia) as Professor of Computational Economic Modeling working with spatial simulation models to study socioeconomic impacts of disasters and emergence of resilience across scales. I was honored to be elected as a Member of the De Jonge Akademie of the Royal Dutch Academy of Sciences (DJA/ KNAW in 2016) and of Social Sciences Council (SWR/KNAW in 2017). From 2009 to 2015 I have been working part-time as an economist at Deltares – the leading Dutch knowledge institute in the field of water management – specializing in economics of climate change, with focus on floods and droughts management.

I am interested in the feedbacks between policies and aggregated outcomes of individual decisions in the context of spatial and environmental policy-making. The issue of social interactions and information diffusion through networks to affect economic behavior is highly relevant here. My research line focuses on exploring how behavioral changes at micro level may lead to critical transitions (tipping points/regime shifts) on macro level in complex adaptive human-environment systems in application to climate change economics. I use agent-based modelling (ABM) combined with social science methods of behavioral data collection on individual decisions and social networks. This research line has been distinguished by the NWO VENI and ERC Starting grants and the Early Career Excellence award of the International Environmental Modeling Society (iEMSs). In 2018 I was invited to serve as the Associate Editor of the Environmental Modelling & Software journal, where I have been a regular Member of the Editorial Board since 2013.

Marco Janssen Member since: Thu, May 10, 2007 at 12:56 AM Full Member Reviewer

M.A., Econometrics and Operations Research, March, Erasmus University, Rotterdam, PhD., Mathematics, 29 November, Maastricht University (Supervisors: J. Rotmans and O.J. Vrieze)

I am a Professor in the School of Sustainability and the Director of the Center for Behavior, Institutions and the Environment. I want to understand how people solve collective problems at different levels of scale, especially those problems related to sustainability of our environment. Our society experience unprecedented challenged to sustain common resource for future generations at a scale we have never experienced before. What makes groups cooperate? What is the role of information? How does the ecological context affect the social fabric? How do they deal with a changing environment? How can we use these insight to address global challenges? To do this research I combine behavioral experiments, agent-based modeling and case study analysis.

Bryann Avendaño Member since: Mon, Jun 29, 2015 at 05:06 AM

B.Sc. Biologist, B.Sc. Ecologist, D.pl. Applied Statistics and Systems Dynamic Modelling

Ecology - Natural Resources Management (Community-based management)

I worked on natural resources management modelling in STELLA. I developed a technical and scientific model to analyze soil, climate and biological conditions to explain how Bamboo ecosystem works and how people in Cundinamarca, Colombia could focus on a sustainable model for use and manage forestry resources.
Also, I worked on the seventh framework program named: Community-based management of Environmental Challenges in Latin America -COMET-LA-. The project built a learning arena with scientists, civil society and government to identify sustainable models for governance of natural resources in social-ecological systems located in a rural context from Colombia, México and Argentina.

I am interesting in research on Modelling of governance and Community-based management of natural resources.

John Murphy Member since: Wed, Aug 31, 2011 at 11:48 AM Full Member

PhD. Anthropology, University of Arizona (2009), MA Education, Ohio State University (1993)

My research uses modeling to understand complex coupled human and natural systems, and can be generally described as computational social science. I am especially interested in modeling water management systems, in both archaeological and contemporary contexts. I have previously developed a framework for modeling general archaeological complex systems, and applied this to the specific case of the Hohokam in southern Arizona. I am currently engaged in research in data mining to understand contemporary water management strategies in the U.S. southwest and in several locations in Alaska. I am also a developer for the Repast HPC toolkit, an agent-based modeling toolkit specifically for high-performance computing platforms, and maintain an interest in the philosophy of science underlying our use of models as a means to approach complex systems. I am currently serving as Communications Officer for the Computational Social Science Society of the Americas.

GIS Certification Member since: Tue, Feb 16, 2021 at 06:56 AM Full Member

The University of Southern California’s accelerated, online GIS graduate programs are unique in higher education. Designed and taught by world-renowned faculty, a USC GIS education offers a multidisciplinary framework for understanding and applying spatial information to modern business, government, military and organizational challenges. We offer two master’s programs, which can be completed in 20 months and four online GIS certificates that can be completed in as little as eight months.
Both master’s programs as well as the masters in GIS certificates and geospatial intelligence offer options for individuals of all backgrounds, from career changers to industry veterans. The geospatial leadership graduate certificate is specifically designed for experienced GIS professionals who are interested in managerial positions. If you have questions about any of our graduate GIS programs, contact an enrollment advisor.

Kristin Crouse Member since: Sun, Jun 05, 2016 at 08:13 AM Full Member Reviewer

B.S. Astronomy/Astrophysics, B.A. Anthropology, Ph.D. Anthropology

I am a Postdoctoral Associate in the Ecology, Evolution and Behavior department at the University of Minnesota. My research involves using agent-based models combined with lab and field research to test a broad range of hypotheses in biology. I am currently developing an agent-based model of animal cell systems to investigate the epigenetic mechanisms that influence cell behavior. For my PhD work, I created a model, B3GET, which simulates the evolution of virtual primates to better understand the relationships between growth and development, life history and reproductive strategies, mating strategies, foraging strategies, and how ecological factors drive these relationships. I have also conducted fieldwork to inform the modeled behavior of these virtual organisms. Here I am pictured with an adult male gelada in Ethiopia!

I specialize in creating agent-based models of biological systems for research and education in genetics, evolution, demography, ecology, and behavior.

David Earnest Member since: Sat, Mar 13, 2010 at 03:46 PM Full Member

Ph.D. in political science (2004), M.A. in security policy studies (1994)

Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.

I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.

While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.

Colin Lynch Member since: Fri, Feb 14, 2025 at 06:35 PM Full Member

Bachelor of Science, Neuroscience, University of Arizona, Ph.D., Animal Behavior, Arizona State University

Science is most interesting when it subverts expectations. As a medic in the army, I used to think of the world in terms of strict hierarchies; some central governing agency gives orders, which trickle down the chain of command. However, it turns out that most biological systems do not work this way, instead distributing control among the members of the group (be they genes, cells, animals). I have since dedicated my research career to understanding how this works. Currently, I am a postdoctoral fellow at Arizona State University in the School of Complex Adaptive Systems, which is the same university where I received my PhD.

I am broadly interested in using both experimental and theoretical tools to uncover the cognitive mechanisms that underlie self-organization in complex adaptive systems. I am also interested in the optimal design of experiments for the biological sciences.

Nicholas Magliocca Member since: Wed, Mar 21, 2018 at 01:51 PM Full Member

My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.

Displaying 10 of 108 results for "Emmanuel Mhike Hove" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept