Computational Model Library

Displaying 10 of 355 results for "Puqing Wang" clear search

This model is intended to support oak tree management by representing the dynamics of oaks in multiple life stages and their competitors and consumers. This is implemented using a differential equation-based theoretical model representing three life stages of oaks: seedlings, juveniles, and adults. It includes the population dynamics of seedlings transitioning to juveniles, juveniles to adults, and adults producing new seedlings, as well as survival rates for each of the stages. It also includes a model of competition for light and water within seedlings and between seedlings and annual grasses. Finally, there is a predation term representing herbivores eating seedlings and grasses, using a Holling Type II (satiating) response with interference for predators and a death rate which depends on the resource extraction rate.

SimAdapt

François Rebaudo | Published Wednesday, August 29, 2012 | Last modified Monday, October 13, 2014

SimAdapt: An individual-based genetic model for simulating landscape management impacts on populations

Community Forest Management with Monitoring and Sanctioning

Maya Lapp Colby Long | Published Wednesday, April 29, 2020 | Last modified Friday, July 23, 2021

This NetLogo ABM builds on Elena Vallino’s model of Loggers using community-based natural resource management for a forest ecosystem. In it we introduce an alternative mechanism for Logger cheating and enforcement of CBNRM rules.

Homophily and Distance Depending Network Generation for Modelling Opinion Dynamics

Sascha Holzhauer | Published Wednesday, August 22, 2012 | Last modified Tuesday, June 18, 2013

The model uses opinion dynamics to test a simple and ecient but empirically based approach for generating social networks in spatial agent-based models which explicitly takes into account restrictions and opportunities imposed by effects of baseline homophily and considers the probability of links that depends on geographical distance between potential partners.

Stationarity Test

Jakob Grazzini | Published Monday, November 29, 2010 | Last modified Saturday, April 27, 2013

This is a stationarity test, it tests whether a given moment is constant during the time series (null hypothesis). The Wald Wolfowitz nonparametric fitness test is applied to time series.

Harvesting daisies in Daisyworld

Marco Janssen | Published Saturday, July 22, 2017

Comparing impact of alternative behavioral theories in a simple social-ecological system.

Network structures tutorial

Tom Brughmans | Published Sunday, September 30, 2018 | Last modified Tuesday, October 02, 2018

A draft model with some useful code for creating different network structures using the Netlogo NW extension. This model is used for the following tutorial:
Brughmans, T. (2018). Network structures and assembling code in Netlogo, Tutorial, https://archaeologicalnetworks.wordpress.com/resources/#structures .

IDEAL

Arika Ligmann-Zielinska | Published Thursday, August 07, 2014

IDEAL: Agent-Based Model of Residential Land Use Change where the choice of new residential development in based on the Ideal-point decision rule.

Models the connection between health agency communication, personal protective behaviour (eg vaccination, hand hygiene) and influenza transmission.

In the consumer advice network, users with connections can interact with each other, and the network topology will change during the opinion interaction. When the opinion distance from i to j is greater than the confidence threshold, the two consumers cannot exchange opinions, and the link between them will disconnect with probability DE. Then, a link from node i to node k is established with probability CE and node i learning opinion from node k.

Displaying 10 of 355 results for "Puqing Wang" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept