Modeling of Social Phenomena, Graph Algorithms, Opinion and Information Dynamics
My primary research interest is in developing spatial computer models of social phenomena and my focus, in particular, has been on crime simulation.
I have a particular interest in the way in which social network structure influences dynamic processes operating over the netowrk, such as adoption of behaviour or spread of disease. More generally, I am interested in using complex systems methods to understand social phenomena.
I am a formally oriented philosopher, applying computational techniques to questions of social epistemology and political philosophy. My current research is focused on explanations and interventions for phenomena of collective irrationality.
I study he role of biologically-based motivations in the formation of socio-political phenomena using agent-based modelling techniques. In particular I look at how behaviour inhibition and activation, as well as interpersonal attitudes can shape the emergence of complex polities.
Modeling and simulation of complex systems, particularly, interbank networks; economic models and critical phenomena modeling
political methodology research covering agent-based modelling and simulation of political phenomena,computational models of political phenomena (political attitudes, elite, corruption, political clientelism, state capture)
Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.
Simulation of emergent behavior systems and metrics associated with the detection and characterization of emergent phenomena.