Displaying 10 of 45 results for "James Wilson" clear search
PhD student in the Agent Systems Research Group of the Department of Artificial Intelligence at the VU University Amsterdam. Current research focuses on Modeling Human Behavior and exploring Serious Games interactions with humans.
Game theory, artificial intelligence, agent-based models, genetic algorithms.
I am an agent-based modeller at the James Hutton Institute in Scotland. I specialise in large-scale modelling of social and socio-ecological systems, with a particular focus on simulating stressors and process that could give rise to transformational change. To date, my research has focused on food and agricultural systems, rural economies, and the WASH sector, with much of it informed by firsthand fieldwork in Africa, Asia, and Europe. I am also interested in leveraging open science, participatory research, quantitative ethnography, and grounded theory within modelling processes to collaboratively generate nuanced insights into individual behaviour and societal dynamics. I received the Open Science Award from the International Land Use Study Centre in 2023 for such work. I currently co-lead the European Social Simulation Association’s Special Interest Group on Modelling Transformative Change and I am the Associate Director of the Centre for Empirical Agent-Based Modelling at the James Hutton Institute.
Christophe Le Page currently works at the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD). Christophe does research on participatory modelling of the interactions between agriculture and the environment, focusing more specifically on the relationships among stakeholders about the management of natural renewable resources. Christophe is designing and using interactive agent-based simulation and role-playing games. He is an active member of the Companion Modelling research group.
Agent-based simulations and role-playing games in the field of renewable resource management.
I obtained a PhD in database information theory from the University of the West of Scotland in 2015, and have been a researcher at the James Hutton Institute ever since. My areas of research are agent-based-modelling (ABM), data curation, effective use of infrastructure as a service (IaaS), and semantic information representation and extraction using formal structures such as computerised ontologies, relational databases and any other structured or semi-structured data representations. I primarily deal with social and agricultural models and was originally taken on in the role of knowledge engineer in order to create the ontology for the H2020 project, Green Lifestyles, Alternative Models and Upscaling Regional Sustainability (GLAMURS). Subsequent work, for the Scottish Government has involved the use of IaaS, more commonly referred to as the “cloud” to create rapidly deployable and cheap alternatives to in-house high-performance computing for both ABM and Geographical Information System models.
It is the mixture of skills and interests involving modelling, data organisation and computing infrastructure expertise that I believe will be highly apposite in the duties associated with being a member of the CoMSES executive. Moreover, prior to joining academia, I spent about 25 years as a developer in commercial IT, in the agricultural, entertainment and banking sectors, and feel that such practical experience can only benefit the CoMSES network.
Improving agent models and architectures for agent-based modelling and simulation applied to crisis management. In particular modelling of BDI agents, emotions, cognitive biases, social attachment, etc.
Designing serious games to increase awareness about climate change or natural disasters; to improve civil engagement in sustainable urban planning; to teach Artificial Intelligence to the general public; to explain social phenomena (voting procedures; sanitary policies; etc).
My research interests stand between natural resource management and ecological economics. The aim of my PhD project responds to the increasing demand for cross-disciplinary agent-based models that examine the disjunction between economic growth and more sustainable use of natural resources.
My research attempts to test the effectiveness of different governance and economic frameworks on managing natural resources sustainably at both regional and national levels. The goal is to simulate how communities and institutions manage the commons in complex socio-ecological systems through several case-studies, e.g. rainforest management in Australia. It is hoped that the models will highlight which combination of variables lead to positive trends in both economic and environmental indicators, which could stimulate more sustainable practices by governments, private sectors and civil society.
Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.
I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.
While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.
I am a computational archaeologist with a strong background in humanities and social sciences, specialising in simulating socioecological systems from the past.
My main concern has been to tackle meaningful theoretical questions about human behaviour and social institutions and their role in the biosphere, as documented by history and archaeology. My research focuses specifically on how social behaviour reflects long-term historical processes, especially those concerning food systems in past small-scale societies. Among the aspects investigated are competition for land use between sedentary farmers and mobile herders (Angourakis et al. 2014; 2017), cooperation for food storage (Angourakis et al. 2015), origins of agriculture and domestication of plants (Angourakis et al. 2022), the sustainability of subsistence strategies and resilience to climate change (Angourakis et al. 2020, 2022). He has also been actively involved in advancing data science applications in archaeology, such as multivariate statistics on archaeometric data (Angourakis et al. 2018) and the use of computer vision and machine learning to photographs of human remains (Graham et al. 2020).
As a side, but not less important interest, I had the opportunity to learn about video game development and engage with professionals in Creative Industries. In one collaborative initiative, I was able to combine my know-how in both video games and simulation models (\href{https://doi.org/10.1007/978-3-030-92843-8_15}{Szczepanska et al. 2022}).
I am a scientist at the Johns Hopkins Applied Physics Laboratory. Previously, I worked for the Board of Governors of the Federal Reserve System as an internal consultant on statistical computing. I have also been a consultant to numerous government agencies, including the Securities and Exchange Commission, the Executive Office of the President, and the United States Department of Homeland Security. I am a passionate educator, teaching mathematics and statistics at the University of Maryland University College since 2010 and have taught public management at Central Michigan University, Penn State, and the University of Baltimore.
I am fortunate to play in everyone else’s backyard. My most recent published scholarship has modeled the population of Earth-orbiting satellites, analyzed the risks of flood insurance, predicted disruptive events, and sought to understand small business cybersecurity. I have written two books on my work and am currently co-editing two more.
In my spare time, I serve Howard County, Maryland, as a member of the Board of Appeals and the Watershed Stewards Academy Advisory Committee of the University of Maryland Extension. Prior volunteer experience includes providing economic advice to the Columbia Association, establishing an alumni association for the College Park Scholars Program at the University of Maryland, and serving on numerous public and private volunteer advisory boards.
Displaying 10 of 45 results for "James Wilson" clear search