Vinicius Ferraz

No bio entered.

Research Interests

Game theory, artificial intelligence, agent-based models, genetic algorithms.

This paper introduces an experimental and exploratory approach, combining game theory and Genetic Algorithms to create a model to simulate evolutionary economic learning. The objective of this paper is to document the implementation of a genetic algorithm as a simulator for economic learning, then analyze how strategic behavior affects the evolution towards optimal outcomes, departing from different starting points and potentially transforming conflict into harmonious scenarios. For this purpose, the introduced construct aimed at allowing for the evaluation of different strategy selection methods and game types. 144 unique 2x2 games, and three distinct strategy selection rules: Nash equilibrium, Hurwicz rule and a Random selection method were used in this study. The particularity of this paper is that rather than changing the strategies themselves or player-specific features, the introduced genetic algorithm changes the games based on the player payoffs. The outcome indicated optimal player scenarios for both The Nash equilibrium and Hurwicz rules strategies, the first being the best performing strategy. The random selection method fails to converge to optimal values in most of the populations, acting as a control feature and reinforcing that strategic behavior is necessary for the evolutionary learning process. We documented also two additional observations. First, the games are often transformed in such a way that agents can coordinate their strategies to achieve a stable optimal equilibrium. And second, we observed the mutation of the populations of games into sets of fewer (repeating) isomorphic games featuring strong characteristics of previous games.

Under development.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.