Displaying 10 of 482 results for "Bin-Tzong Chi" clear search
My research involves the application of behavioral ecological models to archaeological problems with a focus on Pacific Island societies.
Historical studies of Early Christianity. Simulations of social agents aids my interpretation of history.
ABM applied to natural resources and reputation/colaboration.
Quantitative research in economics.
Sedar is a PhD student at the University of Leeds, department of Geography. He graduated in Computer Science at King’s College London 2018. From a very early stage of his degree, he focused on artificial intelligence planning implementations on drones in a search and rescue domain, and this was his first formal attempt to study artificial intelligence. He participated in summer school at Boğaziçi University in Istanbul working on programming techniques to reduce execution time. During his final year, he concentrated on how argumentation theory with natural language processing can be used to optimise political influence. In the midst of completing his degree, he applied to Professor Alison Heppenstall’s research proposal focusing on data analytics and society, a joint endeavour with the Alan Turing Institute and the Economic and Social Research Council. From 2018 - 2023 he will be working on his PhD at the Alan Turing Institute and Leeds Institute for Data Analytics.
Sedar will be focusing on data analytics and smart cities, developing a programming library to try simulate how policies can impact a small world of autonomous intelligent agents to try deduce positive or negative impact in the long run. If the impact is positive and this is conveyed collectively taking into consideration the agent’s health, happiness and other social characteristics then the policy can be considered. Furthermore, he will work on agent based modelling to solve and provide faster solutions to economic and social elements of society, establishing applied and theoretical answers. Some other interests are:
Management of Water Resources Conflicts in Halil-Rud River Basin: Application of Integrated Economic- Hydrological- Behavioral Model
Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.
Andrew Bell (Ph.D. 2010, Michigan) was a Research Fellow in the Environment and Production Technology Division at the International Food Policy Research Institute (IFPRI) in Washington, DC. His current research portfolio focuses on the use of field instruments – such as discrete choice experiments, framed field experiments, randomized control trials – to inform behavior in agent-based models of coupled human-natural systems. Prior to this post, Andrew was a post-doctoral research fellow at The Earth Institute at Columbia University, where he focused on developing applications for paleo-climate histories.
Leonardo Grando is a Ph.D. at the University of Campinas (UNICAMP) in Brazil. I am interested in complex systems, agent-based simulation, artificial intelligence, the Internet of Things, programming, and machine learning tools. I have expertise in Netlogo, Python, R, Latex, SQL, and Linux tools.
My Ph.D. work project is an IoT devices (UAVs) swarm agent-based modeling simulation (ABMS) aiming the perpetual flight. The workflow is Netlogo to ABMS simulate, Python and R to data analysis, and I use Latex for my thesis writing.
I’m a Research Associate in Computational Social Science at Durham University working on a project that intends to produce more realistic artificial social networks (RASN) for simulation by creating a taxonomy of existing generator papers, accessible as an interactive, open-access database, in addition to exploring the interdependencies of social network’s structural properties. I obtained my PhD from University of Glasgow in (2023) where I was working on modelling national identity polarisation on social media platforms using ABMs.
agent-based models, social networks, echo chambers, polarisation
Julia, R, NetLogo, Python
Displaying 10 of 482 results for "Bin-Tzong Chi" clear search