complex systems science; implementation science; agent based modeling; health care infrastructure and population health; public health
Eric is a Research Fellow in the Complexity programme at the MRC/CSO Social and Public Health Unit at the University of Glasgow, working on agent-based simulation approaches to complex public health issues. Prior to this he was a Research Lecturer/Senior Lecturer in Artificial Intelligence and Interactive Systems in the School of Computing at Teesside University. Before working at Teesside, he worked on the CLC Project at the University of Southampton, a multidisciplinary project which focuses on the application of complexity science approaches to the social science domain.
Eric received a BA with Honours in Psychology from Pennsylvania State University, and a PhD from the School of Computing at the University of Leeds. After his PhD, he worked as a JSPS Postdoctoral Research Fellow at the University of Tokyo, conducting research in computer simulation and robotics.
I have been working in the software implementation of different kinds of complex networks inspired in real-life populations. My software may be classified on several categories: complex networks, Aedes aegypti development, dengue epidemics, cultural behavior of populations. I am also researching in education of Deaf people in Colombia.
I received my BSc, MSc, and PhD from the University of Nottingham. My PhD focuses on the Agent-Based Modelling and Simulation (ABMS) of Public Goods Game (PGG) in Economics. In my thesis, a development framework was developed using software-engineering methods to provide a structured approach to the development process of agent-based social simulations. Also as a case study, the framework was used to design and implement a simulation of PGG in the continuous-time setting which is rarely considered in Economics.
In 2017, I joined international, inter-disciplinary project CASCADE (Calibrated Agent Simulations for Combined Analysis of Drinking Etiologies) to further pursue my research interest in strategic modelling and simulation of human-centred complex systems. CASCADE, funded by the US National Institutes of Health (NIH), aims to develop agent-based models and systems-based models of the UK and US populations for the sequential and linked purposes of testing theories of alcohol use behaviors, predicting population alcohol use patterns, predicting population-level alcohol outcomes and evaluating the impacts of policy interventions on alcohol use patterns and harmful outcomes.
I am a scientist at the Johns Hopkins Applied Physics Laboratory. Previously, I worked for the Board of Governors of the Federal Reserve System as an internal consultant on statistical computing. I have also been a consultant to numerous government agencies, including the Securities and Exchange Commission, the Executive Office of the President, and the United States Department of Homeland Security. I am a passionate educator, teaching mathematics and statistics at the University of Maryland University College since 2010 and have taught public management at Central Michigan University, Penn State, and the University of Baltimore.
I am fortunate to play in everyone else’s backyard. My most recent published scholarship has modeled the population of Earth-orbiting satellites, analyzed the risks of flood insurance, predicted disruptive events, and sought to understand small business cybersecurity. I have written two books on my work and am currently co-editing two more.
In my spare time, I serve Howard County, Maryland, as a member of the Board of Appeals and the Watershed Stewards Academy Advisory Committee of the University of Maryland Extension. Prior volunteer experience includes providing economic advice to the Columbia Association, establishing an alumni association for the College Park Scholars Program at the University of Maryland, and serving on numerous public and private volunteer advisory boards.
My main research field is health economic modeling with the main focus on sexually transmitted diseases. We are trying to build a agent-based model using the FLAME-framework (www.flame.ac.uk).
Ecology and population dynamics of fish and wildlife populations, epidemiology, biometry