PhD student in economics
Eletronic Engineer with specialization in Computer Science and a passion for Artificial Intelligence, Simulation, Programming, and many other tech topcis . One life is really not enough to learn and experiment all cool things that are out there. Love also learning languages: Portuguese, English, French, Italian, and German.
Research focuses on the coupled dynamics of human and natural systems, specifically in the context of forest dynamics. I utilize a variety of modeling and analysis techniques, including agent-based modeling, cellular automata, machine learning and various spatial statistics and GIS-related methods. I am currently involved in projects that investigate the anthropogenic and biological drivers behind native and invasive forest pathogens and insects.
The main research area is operation research in logistics with a focus on logistic cluster development and innovative technology usage. Due to mathematical background, Gružauskas focuses on quantitative analysis by conducting simulations, stochastic and dynamic models and other analytical approaches to amplify the developed theories. Gružauskas also is working as a freelance data analyst with a focus on statistical analysis, web scraping and machine learning.
I am a Ph.D. candidate in Computational Social Science (CSS) program at George Mason (GMU). I hold a MAIS from GMU and a Bachelor of Economics from the University of Tasmania. My research interests are the application of ABMs, network analysis, and machine learning to financial markets. My email address and website is [email protected] and www.aussiecas.com
I am interested in using agent-based model to understand the behavior of financial markets
The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.
My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.
Dr. Saeed Moradi received his Ph.D. in Civil Engineering from Texas Tech University in Lubbock, Texas. Saeed has 11+ years of experience in research, policymaking, housing sector, construction management, and structural engineering. His career developed his enthusiasm for the enhancement of post-disaster recovery plans. Through his research on disaster recovery, community resilience, and human-centered complex systems, Saeed aims to bridge the gap between social sciences and civil/infrastructure engineering.
Community and Infrastructure Resilience
Disaster Recovery
Complex Systems Modeling
Agent-Based Modeling
System Dynamics
Machine Learning
Pattern Recognition
Data Mining
Spatial Analysis and Modeling
Construction Management
Building Information Modeling
I am a lowly civil servant moonlighting as a PhD student interested in urban informatics, Smart Cities, artificial intelligence/machine learning, all-things geospatial and temporal, advanced technologies, agent-based modeling, and social complexity… and enthusiastically trying to find a combination thereof to form a disseration. Oh… and I would like to win the lottery.
Sedar is a PhD student at the University of Leeds, department of Geography. He graduated in Computer Science at King’s College London 2018. From a very early stage of his degree, he focused on artificial intelligence planning implementations on drones in a search and rescue domain, and this was his first formal attempt to study artificial intelligence. He participated in summer school at Boğaziçi University in Istanbul working on programming techniques to reduce execution time. During his final year, he concentrated on how argumentation theory with natural language processing can be used to optimise political influence. In the midst of completing his degree, he applied to Professor Alison Heppenstall’s research proposal focusing on data analytics and society, a joint endeavour with the Alan Turing Institute and the Economic and Social Research Council. From 2018 - 2023 he will be working on his PhD at the Alan Turing Institute and Leeds Institute for Data Analytics.
Sedar will be focusing on data analytics and smart cities, developing a programming library to try simulate how policies can impact a small world of autonomous intelligent agents to try deduce positive or negative impact in the long run. If the impact is positive and this is conveyed collectively taking into consideration the agent’s health, happiness and other social characteristics then the policy can be considered. Furthermore, he will work on agent based modelling to solve and provide faster solutions to economic and social elements of society, establishing applied and theoretical answers. Some other interests are:
Dr. Mariam Kiran is a Research Scientist at LBNL, with roles at ESnet and Computational Research Division. Her current research focuses on deep reinforcement learning techniques and multi-agent applications to optimize control of system architectures such as HPC grids, high-speed networks and Cloud infrastructures.. Her work involves optimization of QoS, performance using parallelization algorithms and software engineering principles to solve complex data intensive problems such as large-scale complex decision-making. Over the years, she has been working with biologists, economists, social scientists, building tools and performing optimization of architectures for multiple problems in their domain.