Agent Based Modelling for spatial systems
disaster resilience, flooding, ecosystem services, coupled human natural systems, land use change, hydrology, remote sensing, complexity science
GIS Developer
Land cover changes spatial agents based modelling
Forest fire risk modelling
Geographical information based modelling
Decision support for land planning
My current interests include: agent-based modeling, simulating social complexity, land use, dynamic networks, social and cultural anthropology, HIV transmission dynamics, socio-political conflicts and social movements
One of my research areas is agent-based modelling of land change in Brazil. I have worked with ABM in frontier areas of the Brazilian Amazon. I am also part of the team that develops TerraME, an OSS toolkit for ABM in cellular spaces.
Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).
The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.