Claudia Binder Member since: Monday, June 09, 2014

Human-Environment relations
socio-ecological systems
Simulation modeling

Nicholas Magliocca Member since: Wednesday, March 21, 2018 Full Member

My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.

Jonathan Gillligan Member since: Friday, June 16, 2017 Full Member Reviewer

Ph.D. Yale University (Physics) 1991

Integrating social and natural science to study coupled human-natural systems, and particularly the interactions of society with the physical environment under conditions of environmental stress.

Nicholas Magliocca Member since: Monday, January 31, 2011

Ph.D. in Geography and Environmental Systems, Master's in Environmental Management (M.E.M.), B.S. in Environmental Systems

My research focuses on building a systemic understanding of coupled human-natural systems. In particular, I am interested in understanding how patterns of land-use and land-cover change emerge from human alterations of natural processes and the resulting feedbacks. Study systems of interest include those undergoing agricultural to urban conversion, typically known as urban sprawl, and those in which protective measures, such as wildfire suppression or flood/storm impact controls, can lead to long-term instability.

Dynamic agent- and process-based simulation models are my primary tools for studying human and natural systems, respectively. My past work includes the creation of dynamic, process-based simulation models of the wildland fires along the urban-wildland interface (UWI), and artificial dune construction to protect coastal development along a barrier island coastline. My current research involves the testing, refinement, extension of an economic agent-based model of coupled housing and land markets (CHALMS), and a new project developing a generalized agent-based model of land-use change to explore local human-environmental interactions globally.

Gunnar Dressler Member since: Monday, February 22, 2016 Full Member Reviewer

PhD Applied Systems Science, Dipl. Biomathematics
  • since April 2017: PostDoc at the Department of Ecological Modeling, Helmholtz-Centre for Environmental Research - UFZ
  • since January 2015: Member of the Junior Research Group POLISES - Global food security policies and their social-ecological side effects in regions prone to global change.
  • 2012-2017 PhD student at the Department of Ecological Modeling, Helmholtz-Centre for Environmental Research - UFZ
  • 2006-2011 Diploma in Biomathematics, Ernst-Moritz-Arndt-University of Greifswald
  1. Dynamics of socio-ecological resource use systems
    • Pasture use in dryland grazing systems under change, effects of new technologies and policy instruments, emergence of polarization between pastoralists (e.g. in terms of livestock numbers).
    • Thresholds of disaster management performance under change, loss of manpower, the role of information as critical resource.
  2. Human decision making in agent-based models.
  3. Remote sensing and GIS.

Elizabeth Tellman Member since: Thursday, February 25, 2016

ms environmental science

disaster resilience, flooding, ecosystem services, coupled human natural systems, land use change, hydrology, remote sensing, complexity science

Chloe Atwater Member since: Monday, August 25, 2014

B.S. in Evolutionary Anthropology, UC Davis, PhD Student in Archaeology, ASU

Applying agent-based models to archaeological data, using modern ethnoarchaeological data as an analog for behavior.

Roman Seidl Member since: Friday, September 10, 2010

Dr., Dipl.Psych.

Natural and Social Science Interface (NSSI)

Derek Robinson Member since: Wednesday, November 05, 2014 Full Member Reviewer

The goal of my research program is to improve our understanding about highly integrated natural and human processes. Within the context of Land-System Science, I seek to understand how natural and human systems interact through feedback mechanisms and affect land management choices among humans and ecosystem (e.g., carbon storage) and biophysical processes (e.g., erosion) in natural systems. One component of this program involves finding novel methods for data collection (e.g., unmanned aerial vehicles) that can be used to calibrate and validate models of natural systems at the resolution of decision makers. Another component of this program involves the design and construction of agent-based models to formalize our understanding of human decisions and their interaction with their environment in computer code. The most exciting, and remaining part, is coupling these two components together so that we may not only quantify the impact of representing their coupling, but more importantly to assess the impacts of changing climate, technology, and policy on human well-being, patterns of land use and land management, and ecological and biophysical aspects of our environment.

To achieve this overarching goal, my students and I conduct fieldwork that involves the use of state-of-the-art unmanned aerial vehicles (UAVs) in combination with ground-based light detection and ranging (LiDAR) equipment, RTK global positioning system (GPS) receivers, weather and soil sensors, and a host of different types of manual measurements. We bring these data together to make methodological advancements and benchmark novel equipment to justify its use in the calibration and validation of models of natural and human processes. By conducting fieldwork at high spatial resolutions (e.g., parcel level) we are able to couple our representation of natural system processes at the scale at which human actors make decisions and improve our understanding about how they react to changes and affect our environment.

land use; land management; agricultural systems; ecosystem function; carbon; remote sensing; field measurements; unmanned aerial vehicle; human decision-making; erosion, hydrological, and agent-based modelling

Robert Canales Member since: Tuesday, October 22, 2013

Environmental Engineering, PhD, Statistics, MS

I use agent-based systems, stochastic process, mass balance models and computational statistics in exploring human exposure assessment.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.