Displaying 10 of 48 results agent based models clear search
Guido Fioretti, born 1964, graduated in Electronic Engineering in 1991 at La Sapienza University, Rome. In 1995, he received a PhD in Economics from this same university. Guido Fioretti is currently a lecturer of Organization Science at the University of Bologna.
I am interested in combining social with cognitive sciences in order to model decision-making facing uncertainty. I am particularly interested in connectionist models of individual and organizational decision-making.
I may make use of agent-based models, statistical network analysis, neural networks, evidence theory, cognitive maps as well as qualitative research, with no preference for any particular method. I dislike theoretical equilibrium models and empirical research based on testing obvious hypotheses.
-Use of models, including agent-based models, in understanding the formation of surface archaeological deposits in arid Australia
-Individual-based modelling of resource use on marginal islands in Polynesian prehistory
-Individual-based modelling of the influence of serial voyaging events on body proportions in Remote Oceania
-Discrete event simulation of early horticultural production in New Zealand
My primary research interests lie at the intersection of two fields: evolutionary computation and multi-agent systems. I am specifically interested in how evolutionary search algorithms can be used to help people understand and analyze agent-based models of complex systems (e.g., flocking birds, traffic jams, or how information diffuses across social networks). My secondary research interests broadly span the areas of artificial life, multi-agent robotics, cognitive/learning science, design of multi-agent modeling environments. I enjoy interdisciplinary research, and in pursuit of the aforementioned topics, I have been involved in application areas from archeology to zoology, from linguistics to marketing, and from urban growth patterns to materials science. I am also very interested in creative approaches to computer science and complex systems education, and have published work on the use of multi-agent simulation as a vehicle for introducing students to computer science.
It is my philosophy that theoretical research should be inspired by real-world problems, and conversely, that theoretical results should inform and enhance practice in the field. Accordingly, I view tool building as a vital practice that is complementary to theoretical and methodological research. Throughout my own work I have contributed to the research community by developing several practical software tools, including BehaviorSearch (http://www.behaviorsearch.org/)
Development of spatial agent-based models to sustainability science and ecosystem service assessment, integration of agent-based model with biophysical process based model, improvement of theory of GIScience and land use change science, development of spatial analytical approach (all varieties of spatial regression), spatial data modeling including data mining, linking processes such as climate change, market, and policy to study patterns.
Using agent based models to look at ecosystem-based or integrated management of oceans and coastal zones
Senior Researcher at Helmholtz Centre for Environmental Research - UFZ in Leipzig, Germany
Since 2022 Professorship for Modelling of Human-Environment Systems, Joint appointment of Brandenburg University of Technology Cottbus-Senftenberg and UFZ
PhD in Applied System Science, University of Osnabrück
Diploma in Business Mathematics, University of Leipzig
I am currently head of the Working Group POLISES which uses agent-based models to study the impact of policies on land user behavior and consequences on the social-ecological system. This includes agri-environmental schemes for European agriculture and climate related policies such as insurance. In prior projects we investigated intended and unintended effects of global policy instruments on the social-ecological resilience of smallholders. We focused on the impact of policies targeting climate risk in common property regimes of pastoralists in Africa (Morocco and Kenya/Ethiopia).
On a conceptual level, I work in an international team of modellers, psychologists, agroeconomists and natural scientists on adequate representations of human behaviour in agent-based models. Furthermore, I am interested in how to describe models in an appropriate and standardised manner to increase their comprehensibility and comparison and how to foster model reuse and building up on each others work.
I am a modeler scientist at CIRAD. As member of the Green Research Unit, I contribute to promote the Companion Modeling approach (http://www.commod.org). Through the development of CORMAS, a Framework for Agent-Based Models (http://cormas.cirad.fr), I have been focusing on the development and the use of multi-agent simulations for renewable resource management issues. I have been based several years in Brazil, at the University of Brasilia and at the PUC-Rio University, until 2014. I developed models related to environmental management, such as breeding adaptation to drought in the Uruguay or as breeding and deforestation in the Amazon. I am currently based in Costa Rica, firstly at the University of Costa Rica working on adaptation of agriculture and livestock to Climate Changes, and now at CATIE, working on coffe rust.
Participatory modeling, including collective design of model and interactive simulation
Dissertation: Narrative Generation for Agent-Based Models
Abstract: This dissertation proposes a four-level framework for thinking about having agent-based models (ABM) generate narrative describing their behavior, and then provides examples of models that generate narrative at each of those levels. In addition, “interesting” agents are identified in order to direct the attention of researchers to the narratives most likely to be worth spending their time reviewing. The focus is on developing techniques for generating narrative based on agent actions and behavior, on techniques for generating narrative describing aggregate model behavior, and on techniques for identifying “interesting” agents. Examples of each of these techniques are provided in two different ABMs, Zero-Intelligence Traders (Gode & Sunder, 1993, 1997) and Sugarscape (Epstein & Axtell, 1996).
Mario Ureta holds a BSc in Economics from Birkbeck, University of London, a Graduate Diploma in Data Science from the London School of Economics, and an MSc in Data Science and Analytics from Brunel University London. He is currently a PhD student in Computing Science at Birkbeck, University of London. His research focuses on the economic study of individual preferences and decision-making, and on the use of agent-based models as a bridge between economic theory and computational experimentation. Through economic simulation, his work examines how heterogeneous preferences, social interaction, and firm behaviour jointly shape aggregate market outcomes, including non-linear dynamics and tipping points.
My research interests centre on the study of individual preferences in economics and on understanding how preferences evolve through interaction, learning, and social context. I am particularly interested in how seemingly weak or latent preferences—such as attitudes toward environmental attributes, prices, or social norms—can become amplified through feedback mechanisms and generate non-linear aggregate outcomes. A core methodological focus of my work is the use of agent-based modelling and economic simulation as a bridge between economic theory and experimentation. By treating agent-based models as computational laboratories, I explore how heterogeneous preferences, habit formation, peer influence, and firm behaviour interact dynamically, allowing theoretical mechanisms to be tested, stress-tested, and compared under controlled but flexible conditions that are difficult to achieve using purely analytical or empirical approaches.
I use mathematical and agent‑based modeling, along with opinion‑dynamics and complex‑systems approaches, to explore socioeconomic phenomena. My current research involves developing, implementing, and analyzing economic agent‑based models to identify mechanisms for an economic green transition.
Displaying 10 of 48 results agent based models clear search