Displaying 10 of 135 results Simulation clear search
Gerd Wagner is Professor of Internet Technology at Brandenburg University of Technology, Cottbus, Germany. After studying Mathematics, Philosophy and Informatics in Heidelberg, San Francisco and Berlin, he (1) investigated the semantics of negation in knowledge representation formalisms, (2) developed concepts and techniques for agent-oriented modeling and simulation, (3) participated in the development of a foundational ontology for conceptual modeling, the Unified Foundational Ontology (UFO), and (4) created a new Discrete Event Simulation paradigm, Object Event Modeling and Simulation (OEM&S), and a new process modeling language, the Discrete Event Process Modeling Notation (DPMN). Much of his recent work on OEM&S and DPMN is available from sim4edu.com.
Modeling and simulation of agents and other discrete systems.
Mario Ureta holds a BSc in Economics from Birkbeck, University of London, a Graduate Diploma in Data Science from the London School of Economics, and an MSc in Data Science and Analytics from Brunel University London. He is currently a PhD student in Computing Science at Birkbeck, University of London. His research focuses on the economic study of individual preferences and decision-making, and on the use of agent-based models as a bridge between economic theory and computational experimentation. Through economic simulation, his work examines how heterogeneous preferences, social interaction, and firm behaviour jointly shape aggregate market outcomes, including non-linear dynamics and tipping points.
My research interests centre on the study of individual preferences in economics and on understanding how preferences evolve through interaction, learning, and social context. I am particularly interested in how seemingly weak or latent preferences—such as attitudes toward environmental attributes, prices, or social norms—can become amplified through feedback mechanisms and generate non-linear aggregate outcomes. A core methodological focus of my work is the use of agent-based modelling and economic simulation as a bridge between economic theory and experimentation. By treating agent-based models as computational laboratories, I explore how heterogeneous preferences, habit formation, peer influence, and firm behaviour interact dynamically, allowing theoretical mechanisms to be tested, stress-tested, and compared under controlled but flexible conditions that are difficult to achieve using purely analytical or empirical approaches.
Flaminio Squazzoni is Full Professor of Sociology at the Department of Social and Political Sciences of the University of Milan and director of BEHAVE. He teaches “Sociology” to undergraduate students, “Behavioural Sociology” to master students and “Behavioural Game Theory” to PhD students. Untill November 2018, he has been Associate Professor of Economic Sociology at the Department of Economics and Management of the University of Brescia, where he led the GECS-Research Group on Experimental and Computational Sociology.
He is editor of JASSS-Journal of Artificial Societies and Social Simulation, co-editor of Sociologica -International Journal for Sociological Debate and member of the editorial boards of Research Integrity and Peer Review and Sistemi Intelligenti. He is advisory editor of the Wiley Series in Computational and Quantitative Social Science and the Springer Series in Computational Social Science and member of the advisory board of ING’s ThinkForward Initiative. He is former President of the European Social Simulation Association (Sept 2012/Sept 2016, since 2010 member of the Management Committee) and former Director of the NASP ESLS PhD Programme in Economic Sociology and Labour Studies (2015-2016).
His fields of research are behavioural sociology, economic sociology and sociology of science, with a particular interest on the effect of social norms and institutions on cooperation in decentralised, large-scale social systems. His research has a methodological focus, which lies in the intersection of experimental (lab) and computational (agent-based modelling) research.
In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’
To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.
Researcher at LASTIG lab (https://www.umr-lastig.fr)
Agent based modeling and simulation for social sciences
Model exploration
I am an agent-based modeller at the James Hutton Institute in Scotland. I specialise in large-scale modelling of social and socio-ecological systems, with a particular focus on simulating stressors and process that could give rise to transformational change. To date, my research has focused on food and agricultural systems, rural economies, and the WASH sector, with much of it informed by firsthand fieldwork in Africa, Asia, and Europe. I am also interested in leveraging open science, participatory research, quantitative ethnography, and grounded theory within modelling processes to collaboratively generate nuanced insights into individual behaviour and societal dynamics. I received the Open Science Award from the International Land Use Study Centre in 2023 for such work. I currently co-lead the European Social Simulation Association’s Special Interest Group on Modelling Transformative Change and I am the Associate Director of the Centre for Empirical Agent-Based Modelling at the James Hutton Institute.
Dr. Andreu Moreno Vendrell got the BS degree in Telecommunications Engineering in 1995 and the PhD in Telecommunications Engineering in 2000, both from Universitat Politècnica de Catalunya (Spain). Since 2005 his research is related to parallel and distributed computing. His main interests are focused on high performance parallel applications, automatic performance analysis and dynamic tuning, and agent based simulation systems. He has been involved in the definition of performance models for automatic and dynamic performance tuning and in the development of a new benchmark for agent based frameworks. He is lecturer at the Escola Universitària Salesiana de Sarrià, associated college of Universitat Autònoma de Barcelona. He is IEEE member.
Agent-based systems
As of my incorporation into the Department of Computer Architecture and Operating Systems of the UAB as a postgraduate student, it is possible to divide my scientific-technical career into the following stages:
Simulation of Parallel Applications (1992-99): Focused on the design and development of simulators of parallel applications. This research main objective was the definition of abstractions for parallel programs, based on characterizing tasks and their dependences. Two main abstractions were developed, at first a simpler one, which was easier to parametrize, and, next, a more complex an accurate one. Using these characterizations, several simulation tools were programmed and used in the context of national and European projects. As part of my Master’s thesis, I was involved in the design and development of some of these simulation applications.
National projects: 4, European: 2
International conferences: 3, National: 1, Journal papers: 3
Security in Distributed Systems (2007-12): Focused on the design and development of the FPVA (First Principles Vulnerability Assessment) methodology for the evaluation of vulnerabilities in Grid applications. This methodology clearly defined a set of steps for the assessment of Grid applications vulnerabilities, most of these steps could be automatized or at least supported by specific tools. Jointly with other professors of our group and from the University of Wisconsin, I was involved in the original definition and application of this methodology.
International projects: 2
Master Thesis: 1, Ph.D. Thesis: 1
International conferences: 2, National: 1, Journal papers: 2
Parallel Application Modeling (1999-present): This is my main line of research, aimed at defining high-level performance models for parallel applications. Initially, models were defined for MPI applications with a master-worker and pipeline structure, but later this line has been expanded with the definition of models for memory-intensive OpenMP applications, composed (mix of several structures) applications, applications based on mathematical libraries, distributed data-intensive applications and, finally, applications based on the simulation of agents (ABS) with SPMD structure.
As a result of the work on modeling the performance of ABS parallel systems, we have opened a new line for the definition and implementation of a benchmark for assessing the performance of the parallel simulators generated by well-known platforms, such as FLAME, Repast-HPC or D-Mason. In addition, the knowledge we have gained on this topic has opened new ways of collaboration for optimizing real parallel ABS in the health sciences area (tumor growth and infection spread).
National projects: 12, European: 1
International conferences: 17, National: 4, Journal papers: 11
International Presentations: 4
Parallel Applications Tuning Tools (2010-present): Focused on the design and development of tools for automatic tuning and, in some cases, also dynamic tuning of parallel applications. These tools allow the integration of performance models in the form of external components provided by the analyst. For this reason, this research line is tightly coupled with the Parallel Application Modeling one. The two main tools developed totally or partially by our group are Monitoring Analysis and Tuning Environment-MATE (and its highly scalable evolution ELASTIC) and Periscope Tuning Framework-PTF.
National projects: 2, European: 1
International conferences: 11, Journal papers: 2
Tools: MATE, ELASTIC, PTF
International Presentations: 5
Computational Social Science, Social Simulation, Innovative Methods, Agent-based Modelling, Serious game
Future Studies, AI Sociology, Societal Change, and some classical sociological topics (e.g. Social Mobility and Unequality, Education, Collective Action)
Simulation and Optimization
Supply Chain Management
Data Analytics
Agent-Based Modeling
Displaying 10 of 135 results Simulation clear search