Community

Displaying 6 of 16 results agent based model clear search

Jonas Friege Member since: Sun, Nov 16, 2014 at 08:18 PM

Dipl.-Wi.Ing.

I currently work on an agent-based model on energy-efficient renovation decisions.

Cinzia Tegoni Member since: Wed, Oct 29, 2014 at 04:53 PM Full Member

Water scarcity generated by climate change and mismanagement, affects individual at microlevel and the society and the system at a more general level. The research focuses on irrigation system and their robustness and adaptation capacity to uncertainty. In particular it investigates the evolution of farmers interactions and the effectiveness of policies by means of dynamic game theory and incorporate the results into an Agent Based Model to explore farmers emergent behaviors and the role of an agency in defining policies. Early knowledge of individual decision makers could help the agency to design more acceptable solutions.

Janice Ser Huay Lee Member since: Tue, Oct 14, 2014 at 02:48 PM

PhD in Environmental Systems Science

Modeling land use change from smallholder agricultural intensification

Agricultural expansion in the rural tropics brings much needed economic and social development in developing countries. On the other hand, agricultural development can result in the clearing of biologically-diverse and carbon-rich forests. To achieve both development and conservation objectives, many government policies and initiatives support agricultural intensification, especially in smallholdings, as a way to increase crop production without expanding farmlands. However, little is understood regarding how different smallholders might respond to such investments for yield intensification. It is also unclear what factors might influence a smallholder’s land-use decision making process. In this proposed research, I will use a bottom-up approach to evaluate whether investments in yield intensification for smallholder farmers would really translate to sustainable land use in Indonesia. I will do so by combining socioeconomic and GIS data in an agent-based model (Land-Use Dynamic Simulator multi-agent simulation model). The outputs of my research will provide decision makers with new and contextualized information to assist them in designing agricultural policies to suit varying socioeconomic, geographic and environmental contexts.

Davide Secchi Member since: Tue, Jul 08, 2014 at 10:58 PM Full Member

PhD in Business Administration

I am Professor of Management at Paris School of Business and have held positions at the University of Southern Denmark, Bournemouth University (UK), University of Wisconsin (US), and at the University of Insubria (Italy). My current research efforts are on socially-based decision making, agent-based modeling, cognitive processes in organizations and socially responsible behavior in organizations. With a coauthor network of 50 colleagues located in over 10 different countries, I have published 126 (as of 2025) among articles, book chapters, and books. The monograph Computational organizational cognition (2021, Emerald), and the edited Agent-Based Simulation of Organizational Behavior with M. Neumann (2016, Springer Nature) specifically target computational simulation research in the social sciences. The book How do I Develop an Agent-Based Model? (2022, Elgar) is the first specifically written for business and management scholars.

My simulation research focuses on the applications of ABM to organizational behavior studies. I study socially-distributed decision making—i.e., the process of exploiting external resources in a social environment—and I work to develop its theoretical underpinnings in order to to test it. A second stream of research is on how group dynamics affect individual perceptions of social responsibility and on the definition and measurement of individual social responsibility (I-SR).

Xiaotian Wang Member since: Fri, Mar 28, 2014 at 02:23 AM

PHD of Engineering in Modeling and Simulation, Proficiency in Agent-based Modeling

Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.

Stefan Scholz Member since: Thu, Feb 20, 2014 at 07:13 PM

MSc Public Health

My main research field is health economic modeling with the main focus on sexually transmitted diseases. We are trying to build a agent-based model using the FLAME-framework (www.flame.ac.uk).

Displaying 6 of 16 results agent based model clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept