Computational Model Library

Cooperation is essential for all domains of life. Yet, ironically, it is intrinsically vulnerable to exploitation by cheats. Hence, an explanatory necessity spurs many evolutionary biologists to search for mechanisms that could support cooperation. In general, cooperation can emerge and be maintained when cooperators are sufficiently interacting with themselves. This communication provides a kind of assortment and reciprocity. The most crucial and common mechanisms to achieve that task are kin selection, spatial structure, and enforcement (punishment). Here, we used agent-based simulation models to investigate these pivotal mechanisms against conditional defector strategies. We concluded that the latter could easily violate the former and take over the population. This surprising outcome may urge us to rethink the evolution of cooperation, as it illustrates that maintaining cooperation may be more difficult than previously thought. Moreover, empirical applications may support these theoretical findings, such as invading the cooperator population of pathogens by genetically engineered conditional defectors, which could be a potential therapy for many incurable diseases.

Transitions between homophilic and heterophilic modes of cooperation

Genki Ichinose | Published Sun Jun 14 04:37:32 2015 | Last modified Sun Nov 14 03:59:31 2021

In our model, individual agents are distributed over a two-dimensional square lattice. The agents play the prisoner’s dilemma game with their neighbors, imitate the highest strategy, and then migrate to empty sites based on their tag preference.

This model is designed to address the following research question: How does the amount and topology of intergroup cultural transmission modulate the effect of local group extinction on selectively neutral cultural diversity in a geographically structured population? The experimental design varies group extinction rate, the amount of intergroup cultural transmission, and the topology of intergroup cultural transmission while measuring the effects of local group extinction on long-term cultural change and regional cultural differentiation in a constant-size, spatially structured population. The results show that for most of the intergroup social network topologies tested here, increasing the amount of intergroup cultural transmission (similar to increasing gene flow in a genetic model) erases the negative effect of local group extinction on selectively neutral cultural diversity. The stochastic (i.e., preference attachment) network seems to stand out as an exception.

Exploring homeowners' insulation activity

Jonas Friege Emile Chappin Georg Holtz | Published Mon Jun 1 08:34:32 2015 | Last modified Mon Apr 8 20:38:19 2019

We built an agent-based model to foster the understanding of homeowners’ insulation activity.

Variations on the Ethnocentrism Model of Hammond and Axelrod

Fredrik Jansson | Published Sat Nov 10 16:44:28 2012 | Last modified Sat Apr 27 20:18:53 2013

Agents co-operate or defect towards other agents in a prisoner’s dilemma, with strategy choice depending on whether agents share tags or are kin in different social structures.

The Evolution of Cooperation in an Ecological Context

Oyita Udiani | Published Sat Nov 3 21:56:32 2012 | Last modified Sat Apr 27 20:18:51 2013

This is a replication of the altruistic trait selection model described in Pepper & Smuts (2000, 2002).

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.