Computational Model Library

Stylized agricultural land-use model for resilience exploration

Patrick Bitterman | Published Tue Jun 14 15:18:33 2016 | Last modified Mon Apr 8 20:38:38 2019

This model is a highly stylized land use model in the Clear Creek Watershed in Eastern Iowa, designed to illustrate the construction of stability landscapes within resilience theory.

The purpose of the presented ABM is to explore how system resilience is affected by external disturbances and internal dynamics by using the stylized model of an agricultural land use system.

We explore land system resilience with a stylized land use model in which agents’ land use activities are affected by external shocks, agent interactions, and endogenous feedbacks. External shocks are designed as yield loss in crops, which is ubiquitous in almost every land use system where perturbations can occur due to e.g. extreme weather conditions or diseases. Agent interactions are designed as the transfer of buffer capacity from farmers who can and are willing to provide help to other farmers within their social network. For endogenous feedbacks, we consider land use as an economic activity which is regulated by markets — an increase in crop production results in lower price (a negative feedback) and an agglomeration of a land use results in lower production costs for the land use type (a positive feedback).

A land-use model to illustrate ambiguity in design

Julia Schindler | Published Mon Oct 15 14:57:13 2012 | Last modified Fri Jan 13 18:39:33 2017

This is an agent-based model that allows to test alternative designs for three model components. The model was built using the LUDAS design strategy, while each alternative is in line with the strategy. Using the model, it can be shown that alternative designs, though built on the same strategy, lead to different land-use patterns over time.

SugarscapeCW

Christopher Watts | Published Sat Aug 1 20:37:02 2015 | Last modified Thu Aug 20 08:30:33 2015

A replication in Netlogo 5.2 of the classic model, Sugarscape (Epstein & Axtell, 1996).

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.