Jason Hilton Member since: Thursday, September 19, 2013

BA Politics, MSc Demography

Karandeep Singh Member since: Tuesday, December 19, 2017

Ph. D., Computer Software, M. E., Computer Science and Enginnering, B. Tech., Computer Engineering

Currently working on Agent Based Demography.

Sabine Zinn Member since: Tuesday, January 13, 2015


Development and usage of demographic microsimulation tools and applications, in particular mate-matching and statistical modeling as well as analysis of output

Raquel Guimarães Member since: Monday, October 21, 2019 Full Member

Ph.D., Demography, Universidade Federal de Minas Gerais, M.A., International and Comparative Education, Stanford University

Raquel Guimaraes is a Postdoctoral Research Scholar at IIASA with support from the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES). She is hosted by the Advanced Systems Analysis (ASA), Risk and Vulnerability (RISK), and World Population (POP) programs. Dr. Guimaraes is currently on sabbatical leave from her appointment as an Adjunct Professor in the Economics Department at the Federal University of Paraná (Brazil), where she carries out research on, as well as teaching, economic demography, development microeconomics and applied microeconometrics.

In her research at IIASA, Dr. Guimaraes aims to contribute to the extant literature and to policy-making by offering a case study from Brazil, examining whether and how individual exposure to floods did or not induce affected migration in a setting with intense urbanization, the city of Governador Valadares, in the State of Minas Gerais. To elucidate the role of vulnerability at the household-level in mediating the relationship between mobility and floods, she will rely on causal models and simulation analysis. Her study is aligned with and will have support from, the Brazilian Network for Research on Global Climate Change (Rede Clima), which is an important pillar in support of R&D activities of the Brazilian National Climate Change Plan.

Dr. Guimaraes graduated from the Federal University of Minas Gerais, Brazil, in 2007 with degrees in economics. She completed an MA degree in International Comparative Education at Stanford University (2011) and earned a doctorate in demography from the Federal University of Minas Gerais in 2014.

Shelby Manney Member since: Friday, September 26, 2014

BA - English, BS - Anthropology (Archaeoinformatics - GIS, Applied Stats, Data Mang.,CRM CERT), BFA - Music, BA - Writing & Rhetoric, MA - Technical, Professional, & Science Writing (TPSW - Cert), MS - Cultural Studies in Applied Sciences (Philosophy of Science - Archaeology/Semiotics Focus), MA - Anthropology

General Question:
Without Central Control is self organization possible?

Specific Case:

Considering the seemingly preplanned, densely aggregated communities of the prehistoric Puebloan Southwest, is it possible that without centralized authority (control), that patches of low-density communities dispersed in a bounded landscape could quickly self-organize and construct preplanned, highly organized, prehistoric villages/towns?

Andrew Gillreath-Brown Member since: Thursday, July 25, 2019 Full Member

A.S., Pre-Engineering, Wallace State Community College, B.S., Mathematics and Natural Sciences, Freed-Hardeman University, B.A., Religious Studies, Freed-Hardeman University, B.A., Anthropology, Middle Tennessee State University, M.S., Applied Geography: Environmental Archaeology, University of North Texas

I am a computational archaeologist interested in how individuals and groups respond to both large scale processes such as climate change and local processes such as violence and wealth inequality. I am currently a PhD Candidate in the Department of Anthropology at Washington State University.

My dissertation research focuses on experimenting with paleoecological data (e.g., pollen) to assess whether or not different approaches are feasible for paleoclimatic field reconstructions. In addition, I will also use pollen data to generate vegetation (biome) reconstructions. By using tree-ring and pollen data, we can gain a better understanding of the paleoclimate and the spatial distribution of vegetation communities and how those changed over time. These data can be used to better understand changes in demography and how people responded to environmental change.

In Summer 2019, I attended the Santa Fe Institute‘s Complex Systems Summer School, where I got to work in a highly collaborative and interdisciplinary international scientific community. For one of my projects, I got to merry my love of Sci-fi with complexity and agent-based modeling. Sci-fi agent-based modeling is an anthology and we wanted to build a community of collaborators for exploring sci-fi worlds. We also have an Instagram page (@Scifiabm).

Kristin Crouse Member since: Sunday, June 05, 2016 Full Member Reviewer

B.S. Astronomy/Astrophysics, B.A. Anthropology

I am a PhD Candidate in the Biological Anthropology program at the University of Minnesota. My research involves using agent-based models combined with field research to test a broad range of hypotheses in biology. I have created a model, B3GET, which simulates the evolution of virtual organisms to better understand the relationships between growth and development, life history and reproductive strategies, mating strategies, foraging strategies, and how ecological factors drive these relationships. I also conduct field research to better model the behavior of these virtual organisms. Here I am pictured with an adult male gelada in Ethiopia!

I specialize in writing agent-based models for both research in and the teaching of subjects including: biology, genetics, evolution, demography, and behavior.

For my dissertation research, I have produced “B3GET,” an agent-based model which simulates populations of virtual organisms evolving over generations, whose evolutionary outcomes reflect the selection pressures of their environment. The model simulates several factors considered important in biology, including life history trade-offs, investment in body size, variation in aggression, sperm competition, infanticide, and competition over access to food and mates. B3GET calculates each agent’s ‘decision-vectors’ from its diploid chromosomes and current environmental context. These decision-vectors dictate movement, body growth, desire to mate and eat, and other agent actions. Chromosomes are modified during recombination and mutation, resulting in behavioral strategies that evolve over generations. Rather than impose model parameters based on a priori assumptions, I have used an experimental evolution procedure to evolve traits that enabled populations to persist. Seeding a succession of populations with the longest surviving genotype from each run resulted in the evolution of populations that persisted indefinitely. I designed B3GET for my dissertation, but it has an indefinite number of applications for other projects in biology. B3GET helps answer fundamental questions in evolutionary biology by offering users a virtual field site to precisely track the evolution of organismal populations. Researchers can use B3GET to: (1) investigate how populations vary in response to ecological pressures; (2) trace evolutionary histories over indefinite time scales and generations; (3) track an individual for every moment of their life from conception to post-mortem decay; and (4) create virtual analogues of living species, including primates like baboons and chimpanzees, to answer species-specific questions. Users are able to save, edit, and import population and genotype files, offering an array of possibilities for creating controlled biological experiments.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.