Community

Displaying 10 of 95 results for "Dara Vancea" clear search

Mike Wilsonn Member since: Thu, Jul 20, 2023 at 11:07 AM

Mike Wilson is a Content Strategist at SunTec India. He has been associated with the company for 10+ years. He has notable experience in developing content around trending eCommerce technologies, development practices, marketing hacks, and other similar topics to help business owners solve their business challenges and meet their goals. He keeps tabs on the latest trends in and around the industry to present valuable write-ups for readers. Other than writing about the eCommerce niche, he also writes about data services, technology (app and web development), digital publishing, and digital marketing.

Ping Lu Member since: Fri, Feb 24, 2017 at 04:47 AM Full Member Reviewer

Lu Ping is a dedicated researcher in interdisciplinary fields including artificial intelligence (AI), digital economy, technological innovation, and industrial economics. Currently serving as an Associate Research Fellow at the China Academy of Information and Communications Technology (CAICT), Lu Ping focuses on examining the impacts of digital technologies (e.g., AI, big data, and IoT) on economic growth, industrial ecosystems, policy formulation, and societal ethics through multidimensional data modeling and empirical research.
Representative Academic Contributions:
1. AI Development and Societal Implications
A Brief History of Artificial Intelligence Development in China (2017): Explored the technological evolution and policy-driven pathways of China’s AI industry.
Ethical Dilemmas Faced by AI Algorithms (2018): Analyzed ethical challenges such as algorithmic bias and data privacy, proposing governance frameworks.
A Brief History of the Evolution of Smart Hardware in China (2018): Systematically reviewed the technological iterations and market dynamics of China’s smart hardware sector.
2.Technological Innovation and Industrial Economics
An Empirical Analysis of Technological Innovation Driving Growth in Internet Companies: Evidence from A-Share Listed Internet Firms in Shanghai and Shenzhen (2019).
Research on Competitiveness Measurement of Frontier Emerging Industries Based on Data Envelopment Analysis (DEA) Models (2019).
3.Digital Economy and Market Behavior
Correlation Analysis of Crowdfunding Behavior and Funding Performance for Internet Products: A Bayesian Approach Based on JD.com Crowdfunding Data (2018): Uncovered nonlinear relationships between user participation and project success rates using crowdfunding platform data.
Analyzing the Effects of Developer and User Behavior on Mobile App Downloads (2019): Built predictive models for app market performance based on user behavior data.
4.Policy Simulation
General Equilibrium Analysis of Beijing’s Water Supply and Consumption Policies: A Computable General Equilibrium (CGE) Model-Based Approach (2015).
Impact Analysis of EU Food Safety Standards on China’s Food Industry: A Dynamic Global Trade Analysis Project (GTAP) Model-Based Study (2015).
Academic Contributions:
Pioneered interdisciplinary paradigms in industrial economics research by integrating perspectives from econometrics, data science, and sociology. Published high-impact research in AI ethics, digital economy policies, and resource-environmental economics, providing decision-making references for academia and policymakers.

My research focuses on the interdisciplinary nexus of artificial intelligence (AI), digital economy, technological innovation, and industrial economics, with an emphasis on understanding how digital technologies reshape economic structures, policy frameworks, and societal norms. Key areas of interest include:

  1. Artificial Intelligence & Digital Transformation
    Ethical and Governance Challenges of AI: Investigating algorithmic bias, data privacy, and accountability in AI systems; proposing frameworks for ethical AI development and deployment.
    AI Adoption and Economic Impact: Analyzing how AI-driven automation and innovation influence productivity, labor markets, and industrial competitiveness.
  2. Digital Economy & Platform Markets
    Crowdfunding, Sharing Economy, and Digital Platforms: Examining user behavior, market dynamics, and performance drivers in emerging digital ecosystems (e.g., crowdfunding campaigns, app markets).
    Digital Innovation and Entrepreneurship: Studying the role of technological innovation in firm growth, particularly in internet-based industries.
  3. Technological Innovation & Industrial Policy
    Innovation-Driven Industrial Competitiveness: Developing quantitative models (e.g., DEA, CGE) to assess the efficiency and competitiveness of emerging industries under technological disruption.
    Policy Evaluation and Simulation: Using computational modeling to analyze the economic and industrial impacts of trade policies, environmental regulations, and technological standards.
  4. Resource Economics & Sustainable Development
    Water Resource Management and Policy: Evaluating the economic and environmental trade-offs of water conservation policies through general equilibrium modeling.
    Global Trade and Food Security: Assessing the impacts of international trade regulations (e.g., food safety standards) on domestic industries and global supply chains.
  5. Cross-Disciplinary Methodological Innovation
    Integrating econometrics, data science, and behavioral economics to enhance the rigor and relevance of industrial and policy research.
    Leveraging big data analytics, machine learning, and agent-based modeling to uncover complex relationships in digital markets and technological ecosystems.

MV Eitzel Solera Member since: Sun, May 21, 2017 at 09:14 PM Full Member Reviewer

As a data scientist, I employ a variety of ecoinformatic tools to understand and improve the sustainability of complex social-ecological systems.  I also apply Science and Technology Studies lenses to my modeling processes in order to see potential ways to make social-ecological system management more just.  I prefer to work collaboratively with communities on modeling: teaching mapping and modeling skills, collaboratively building data representations and models, and analyzing and synthesizing community-held data as appropriate. At the same time, I look for ways to create space for qualitative and other forms of knowledge to reside alongside quantitative analysis, using mixed and integrative methods.

Recent projects include: 1) Studying Californian forest dynamics using Bayesian statistical models and object-based image analysis (datasets included forest inventories and historical aerial photographs); 2) Indigenous mapping and community-based modeling of agro-pastoral systems in rural Zimbabwe (methods included GPS/GIS, agent-based modeling and social network analysis); 3) Supporting Tribal science and environmental management on the Klamath River in California using historical aerial image analysis of land use/land cover change and social networks analysis of water quality management processes; 4) Bayesian statistical modeling of community-collected data on human uses of Marine Protected Areas in California.

Roy Sanderson Member since: Mon, Jan 07, 2013 at 01:47 PM

BSc (Hons) Applied Biology Class 1, PhD

Ecological modeller; behaviour of pollinating insects (especially bumblebees) in GIS landscapes. Hope to apply ABM methods to model some of the field data we have collected

Thomas Clemen Member since: Tue, Sep 17, 2019 at 12:24 PM Full Member

Diploma in Computer Science, Technical University of Dortmund, Germany, Dr. rer. nat. in Computer Science, Christian-Albrechts University, Kiel, Germany

social-ecological modelling; cognitive modelling; agent-based modeling&simulation; data science; smart city modelling; artificial intelligence; large-scale simulation

Aaron Bramson Member since: Tue, Jul 01, 2014 at 12:36 PM Full Member

Ph.D. Philosophy and Political Science, University of Michigan, M.S. Mathematics, Northeastern University, B.S. Economics, University of Florida, B.A. Philosophy, University of Florida

Dr. Aaron Bramson is principal investigator of the AI Strategy Center of GA technologies in Tokyo, Japan, as well as an Affiliate Researcher in the Department of General Economics of Ghent University in Belgium. His research specialty is complexity science, especially methodologies for modeling complex systems. Research topics span across disciplines: measures of polarization and diversity, belief measure interoperability, integrating geospatial and network analyses for measuring walkability and neighborhood identification, and myriad applications in artificial intelligence and data visualization. He received his Ph.D. from the University of Michigan in a joint program with the departments of Political Science and Philosophy as well as an M.S. in Mathematics from Northeastern University.

Complex systems, agent-based modeling, social simulation, computational models, network models, network theory, methodology, philosophy of science, ontology, epistemology, ethics, artificial intelligence, big data analysis, geospatial data analysis,

Sara Mcphee-Knowles Member since: Wed, Mar 05, 2014 at 07:17 PM

PhD Candidate, Public Policy, Bachelor of Arts in Public Administration, 2009

My dissertation research at the Johnson-Shoyama Graduate School of Public Policy focuses on food safety and consumer choices, using agent-based models as a novel method for investigating this policy space.

Nanda Wijermans Member since: Mon, Oct 11, 2010 at 06:46 AM Full Member

In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’

To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.

Bernardo Furtado Member since: Mon, Jan 27, 2014 at 10:57 AM Full Member Reviewer

PhD Geosciences/Economics, MsC Geography, BA Architecture

Tenured researcher @ government think-tank (IPEA) and CNPq (productivity grant - since 2014), complex modeler interested, data fan, transitional Python user, PhD. Background in urban analysis, economics, geography. From twitter.com/furtadobb

Agent-based modeling, urban policy, urban economics. Metropolis and municipalities analyses.

Jessica Turnley Member since: Mon, Jul 13, 2015 at 08:02 PM Full Member

B.A. Anthropology/English Lit, Univ of California, Santa Cruz, 1974, M.A. Social Anthropology, Univ of Michigan, Ann Arbor, 1977, M.A. Cultural Anthropology, Cornell University, 1978, Ph.D. Anthropology/SE Asian Studies, Cornell University, 1983

I am interested in questions of method, and in the application of computational social models to a wide variety of national security questions (such as counterterrorism and counterinsurgency) as well as decision-making around complex natural resources such as water. My methods interest center on the use of qualitative social theory to inform the structure of computational social models, and the ways in which such models handle qualitative data. This raises questions around the nature of data and the ways in which computational social models convey information to decision-makers.

Displaying 10 of 95 results for "Dara Vancea" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept