Displaying 10 of 555 results for "Ian M Hamilton" clear search
My initial training was in cadastre and geodesy (B.Eng from the Distrital University, UD, Colombia). After earning my Master’s degree in Geography (UPTC, Colombia) in 2003, I worked for the “José Benito Vives de Andreis” marine and coastal research institute (INVEMAR) and for the International Center for Tropical Agriculture (CIAT). Three years later, in 2006, I left Colombia to come to Canada, where I began a PhD in Geography with a specialization in modelling complex systems at Simon Fraser University (SFU), under the direction of Dr. Suzana Dragicevic (SAMLab). In my dissertation I examined the topic of spatial and temporal modelling of insect epidemics and their complex behaviours. After obtaining my PhD in 2011, I began postdoctoral studies at the University of British Columbia (2011) and the University of Victoria (2011-2013), where I worked on issues concerning the spatial and temporal relationships between changes in indirect indicators of biodiversity and climate change.
I am an Associate Professor in the Department of Geography at the University of Montreal. My research interests center around the incorporation of artificial intelligence and machine learning techniques into the development Agent-Based Models to solve complex socio-ecological problems in different kind of systems, such as urban, forest and wetland ecosystems.
The core of my research projects aim to learn more about spatial and temporal interactions and relationships driving changes in our world, by focusing on the multidisciplinary nature of geographical information science (GIScience) to investigate the relationships between ecological processes and resulting spatial patterns. I integrate spatial analysis and modeling approaches from geographic information science (GIScience) together with computational intelligence methods and complex systems approaches to provide insights into complex problems such as climate change, landscape ecology and forestry by explicitly representing phenomena in their geographic context.
Specialties: Agent-based modeling, GIScience, Complex socio-environmental systems, Forestry, Ecology
I am a computational archaeologist with a strong background in humanities and social sciences, specialising in simulating socioecological systems from the past.
My main concern has been to tackle meaningful theoretical questions about human behaviour and social institutions and their role in the biosphere, as documented by history and archaeology. My research focuses specifically on how social behaviour reflects long-term historical processes, especially those concerning food systems in past small-scale societies. Among the aspects investigated are competition for land use between sedentary farmers and mobile herders (Angourakis et al. 2014; 2017), cooperation for food storage (Angourakis et al. 2015), origins of agriculture and domestication of plants (Angourakis et al. 2022), the sustainability of subsistence strategies and resilience to climate change (Angourakis et al. 2020, 2022). He has also been actively involved in advancing data science applications in archaeology, such as multivariate statistics on archaeometric data (Angourakis et al. 2018) and the use of computer vision and machine learning to photographs of human remains (Graham et al. 2020).
As a side, but not less important interest, I had the opportunity to learn about video game development and engage with professionals in Creative Industries. In one collaborative initiative, I was able to combine my know-how in both video games and simulation models (\href{https://doi.org/10.1007/978-3-030-92843-8_15}{Szczepanska et al. 2022}).
Leonardo Grando is a Ph.D. at the University of Campinas (UNICAMP) in Brazil. I am interested in complex systems, agent-based simulation, artificial intelligence, the Internet of Things, programming, and machine learning tools. I have expertise in Netlogo, Python, R, Latex, SQL, and Linux tools.
My Ph.D. work project is an IoT devices (UAVs) swarm agent-based modeling simulation (ABMS) aiming the perpetual flight. The workflow is Netlogo to ABMS simulate, Python and R to data analysis, and I use Latex for my thesis writing.
Anna Pagani is an architect and doctoral researcher under the supervision of Prof. Claudia R. Binder in the interdisciplinary laboratory for Human-Environment Relations in Urban Systems (HERUS) at École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. In her PhD, she works closely with tenants, housing providers and practitioners to provide housing that is not only environmentally but also socioculturally sustainable.
Her research interests revolve around the relationship between the human and material components of the built environment, and more specifically on the introduction of a systems perspective to housing studies.
I have a particular interest in the way in which social network structure influences dynamic processes operating over the netowrk, such as adoption of behaviour or spread of disease. More generally, I am interested in using complex systems methods to understand social phenomena.
I obtained a PhD in database information theory from the University of the West of Scotland in 2015, and have been a researcher at the James Hutton Institute ever since. My areas of research are agent-based-modelling (ABM), data curation, effective use of infrastructure as a service (IaaS), and semantic information representation and extraction using formal structures such as computerised ontologies, relational databases and any other structured or semi-structured data representations. I primarily deal with social and agricultural models and was originally taken on in the role of knowledge engineer in order to create the ontology for the H2020 project, Green Lifestyles, Alternative Models and Upscaling Regional Sustainability (GLAMURS). Subsequent work, for the Scottish Government has involved the use of IaaS, more commonly referred to as the “cloud” to create rapidly deployable and cheap alternatives to in-house high-performance computing for both ABM and Geographical Information System models.
It is the mixture of skills and interests involving modelling, data organisation and computing infrastructure expertise that I believe will be highly apposite in the duties associated with being a member of the CoMSES executive. Moreover, prior to joining academia, I spent about 25 years as a developer in commercial IT, in the agricultural, entertainment and banking sectors, and feel that such practical experience can only benefit the CoMSES network.
I’m interested in inter-individual interactions in general, demo-genetics and group behaviour. I’m currently working on locusts. Visit my website for more info.
I am an Associate Professor of Data Analytics at Trinity Business School, Trinity College Dublin, The University of Dublin and a Senior Fellow of the Higher Education Academy. I was the Director of Postgraduate Teaching at the Department of Management Science, Lancaster University Management School overseeing MSc programmes in Business Analytics, Management Science and Marketing Analytics, Logistics and Supply Chain Management, e-Business and Innovation, and Project Management.
My research interests lie in the areas of predictive analytics using simulation. I am particularly interested in simulation modelling methodology (symbiotic simulation, hybrid modelling, agent-based simulation, discrete-event simulation) with applications in operations and supply chain management (e.g. hospital, manufacturing, transportation, warehouse) and social dynamics (e.g. diffusion of perception). Currently, I am the associate editor of the Journal of Simulation and the secretary of The OR Society‘s Special Interest Group in Simulation. I am the track coordinator of Agent-Based Simulation for the Winter Simulation Conference 2018.
Displaying 10 of 555 results for "Ian M Hamilton" clear search