Displaying 10 of 14 results public health clear filters
My main research field is health economic modeling with the main focus on sexually transmitted diseases. We are trying to build a agent-based model using the FLAME-framework (www.flame.ac.uk).
complex systems science; implementation science; agent based modeling; health care infrastructure and population health; public health
My research interests include policy informatics and decision making, modeling in policy analysis and management decisions, public health management and policy, and the role of public value in policy development. I am particularly interested in less mainstream approaches to modeling that account for learning, feedback, and other systems dynamics. I include Bayesian inference, agent-based models, and behavioral assumptions in both my research and teaching.
In my dissertation research, I conceptualize state Medicaid programs as complex adaptive systems characterized by diverse actors, behaviors, relationships, and objectives. These systems reproduce themselves through both strategic and emergent mechanisms of program management. I focus on the mechanism by which citizens are sorted into or out of the system: program enrollment. Using Bayesian regression and agent-based models, I explore the role of administrative practices (such as presumptive eligibility and longer continuous eligibility periods) in increasing enrollment of eligible citizens into Medicaid programs.
Christian Reynolds is a Public Health Research Fellow at the Rowett Institute of Nutrition and Health, University of Aberdeen, and an adjunct Research Fellow at the Barbara Hardy Institute for Sustainable Environments and Technologies, University of South Australia. Christian’s research examines the economic and environmental impacts of food consumption; with focus upon food waste, sustainable diets, and the political power of food in international relations.
Christian has experience in economic input-output, material flow and environmental (Life Cycle Analysis) modelling and has published peer reviewed articles on these topics.
Population Health Modeling
Aniruddha Belsare is a disease ecologist with a background in veterinary medicine, interspecific transmission, pathogen modeling and conservation research. Aniruddha received his Ph.D. in Wildlife Science (Focus: Disease Ecology) from the University of Missouri in 2013 and subsequently completed a postdoctoral fellowship there (University of Missouri, May 2014 – June 2017). He then was a postdoctoral fellow in the Center for Modeling Complex Interactions at the University of Idaho (June 2017 - March 2019) and later a Research Associate with the Boone and Crockett Quantitative Wildlife Center, Michigan State University (March 2019 - Jan 2021). He was a Research Scientist in the Civitello Disease Ecology Lab at Emory University from Jan 2021 to Jan 2023. Currently, Aniruddha is an Assistant Professor of Disease Ecology at the College of Forestry, Wildlife & Environment / College of Veterinary Medicine at Auburn University.
My research interests primarily lie at the interface of ecology and epidemiology, and include host-pathogen systems that are of public health or conservation concern. I use ecologic, epidemiologic and model-based investigations to understand how pathogens spread through, persist in, and impact host populations. Animal disease systems that I am currently working on include canine rabies, leptospirosis, chronic wasting disease, bighorn sheep pneumonia, raccoon roundworm (Baylisascaris procyonis), chytridiomycosis, and Lyme disease.
Antônio Sousa is a biologist with a background in medical entomology, disease ecology, statistical and computational modeling. Antônio has a Ph.D. (2018) and Master (2014) in Science from the School of Public Health at the University of São Paulo, Brazil. Currently, he is a postdoctoral fellow in the same institution.
My research interest lies in the study of the transmission and dispersal dynamics of vector-borne diseases. I have been working on the development of statistical, mathematical and computational models to understand bioecology of mosquitoes and to predict the transmission dynamics of pathogens transmitted by these insects.
Displaying 10 of 14 results public health clear filters