Displaying 10 of 545 results for "Ian M Hamilton" clear search
I am an anthropological archaeologist with broad interests in hunter-gatherers, lithic technology, human evolution, and complex systems theory. I am particularly interested in understanding processes of long term social, evolutionary, and adaptational change among hunter-gatherers, specifically by using approaches that combine archaeological data, ethnographic data, and computational modeling.
Professor, School of Human Evolution & Social Change
Professor, School of Complex Adaptive Systems
Affiliate Professor, School of Earth and Space Exploration
Arizona State University
My interests center around long-term human ecology and landscape dynamics with ongoing projects in the Mediterranean (late Pleistocene through mid-Holocene) and recent work in the American Southwest (Holocene-Archaic). I’ve done fieldwork in Spain, Bosnia, and various locales in North America and have expertise in hunter/gatherer and early farming societies, geoarchaeology, lithic technology, and evolutionary theory, with an emphasis on human/environmental interaction, landscape dynamics, and techno-economic change.
Quantitative methods are critical to archaeological research, and socioecological sciences in general. They are an important focus of my research, especially emphasizing dynamic modeling, spatial technologies (including GIS and remote sensing), statistical analysis, and visualization. I am a member of the open source GRASS GIS international development team that is making cutting edge spatial technologies available to researchers and students around the world.
I have a backround in computer science, worked in natural resource management, and ended up with a PhD in Sustainability Sciences!
My interests are to explore aspects of sustainability, resilience, and adaptive management in social-ecological systems using agent-based models and other simulation models.
Eric has graduate degrees in urban planning and policy and sociology and an undergraduate degree in biology. He has worked on multiple collaborative and interdisciplinary projects and is skilled at engaging communities and other stakeholders. He is adept at qualitative research and has earned a Certificate in Geospatial Analysis and Visualization, demonstrating proficiency in Adobe Suite, ArcGIS, agent-based modeling and system dynamics modeling. He is currently writing manuscripts for publication based on his work on motivating energy retrofit decisions, energy-related urban planning, municipal decision-making on infrastructure investments, and other work on resilience and sustainability.
Conducts urban planning and policy research on energy efficiency, environmental, and infrastructure decision making.
Modelling of socio-ecological systems and management of common property resources in artisanal fisheries. Population dynamics of coastal marine invertebrates exploited by artisanal fisheries.
Network ABMS in solar technology adoption in households
Welcome to my Flekosteel review project. I am interested in engaging more people in the natural ways of joints treatment.
Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).
The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.
Displaying 10 of 545 results for "Ian M Hamilton" clear search