Displaying 10 of 26 results physics clear search
My core research interest is to understand how humans and other living creature perceive and behave; respond and act upon their environment and how this dynamic interplay shapes us into who we are. In recognition of the broad scope of this question I am a strong believer in the need for inter- and multi-disciplinary approaches and have worked at research groups in a wide range of departments and institutions, including university departments of Physics as well as Psychology, a bio-medical research lab, a robotics research laboratory and most recently the RIKEN Brain Science Institute. Though my work has primarily taken the form of computational neuroscience I have also performed psychophysical experiments with healthy human subjects, been involved in neural imaging experiments and contributed towards the development of a humanoid robot.
Based on the philosophy of ‘understanding through creating’ I believe that bio-mimetic and biologically inspired computational and robotic engineering can teach us not only how to build more flexible and robust tools but also how actual living creatures deal with their environment. I am therefore a strong believer in the fertile information exchange between scientific as well as engineering research disciplines.
Evolutionary Dynamics, Public Good Games, Emergence of Cooperation.
Our overriding approach has been to advance the state-of-the-art in conducting large-scale simulation studies, by developing and disseminating experimental designs that facilitate the exploration of complex simulation models
Malte Vogl is a senior research fellow at the Max Planck Institute of Geoanthropology with a PhD in Physics. Until recently, he worked as a research fellow and PI at the Max Planck Institute for the History of Science, in projects ranging from Digital Humanities work on the ancient perception of time and space in the cluster of excellency TOPOI, building and evalutation of research data infrastructures in context of the DARIAH project, large scale analysis of archival data for the history of the MPG project GMPG to the most recent, BMBF-funded work on method development for modelling knowledge evolution as a multilayered temporal network in the ModelSEN project.
History of Science, Evolution of Knowledge, Collective decision making

http://learnmem.cshlp.org/content/27/1.cover-expansion
(Cover simulation using NetLogo, January 2020)
Enver Miguel Oruro, Grace V.E. Pardo, Aldo B. Lucion, Maria Elisa Calcagnotto and Marco A. P. Idiart. Maturation of pyramidal cells in anterior piriform cortex may be sufficient to explain the end of early olfactory learning in rats. Learn. Mem. 2020. 27: 20-32 © 2020 Oruro et al.; Published by Cold Spring Harbor Laboratory Press

http://learnmem.cshlp.org/content/27/12.cover-expansion
(paper using NetLogo, December 2020)
Enver Miguel Oruro, Grace V.E. Pardo, Aldo B. Lucion, Maria Elisa Calcagnotto and Marco A. P. Idiart. The maturational characteristics of the GABA input in the anterior piriform cortex may also contribute to the rapid learning of the maternal odor during the sensitive period Learn. Mem. 2020. 27: 493-502 © 2020 Oruro et al.; Published by Cold Spring Harbor Laboratory Press
Enver Oruro, BA Psych. PhD(s).
Computational Psychologist
[email protected]
https://br.linkedin.com/in/enveroruro
Neurocomputational and Language Processing Laboratory, Institute of Physics/ UFRGS
Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry/ UFRGS
Meeting Organization
2009 First Meeting on Complex Systems -Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima
2010 Second Meeting on Complex Systems - College of Psychologists of Peru / Colegio de Psicólogos del Perú (CPsP) Lima
2012 3rd Meeting on Complex Systems – Computational Social Psychology, /Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima February 2012 https://www.comses.net/events/185/
http://www.neurocienciaperu.org/home/3ra-reunion-de-sistemas-complejos-psicologia-social-computacional
2012 4th Meeting on Complex Systems – Cognotecnology and Cognitive Science, Neuroscience and Behavior Laboratory, School of Medicine UPCH Lima July 2012 https://www.comses.net/events/212/
2014 5th Meeting on Complex Systems – Complexity Roadmap. The Imperial City of the Incas, Cusco, April. https://www.comses.net/events/312/
2015 Chair of “e-session on Neuroscience and Behavior” UNESCO UniTwin CS-DC’15
2015 Chair of “e-session on Social Psychology” UNESCO UniTwin CS-DC’15
CS-DC’15 (Complex Systems Digital Campus ’15 – World e-Conference) is organizing the e-satellites of CCS’15, the international Conference on Complex Systems. It is devoted to all scientists involved in the transdisciplinary challenges of complex systems, crossing theoretical questions with experimental observations of multi-level dynamics. CCS’15 is organized by the brand new ASU-SFI Center for Biosocial Complex Systems. Arizona State University, (USA) from Sept 28 to Oct 2, 2015, in close collaboration with the Complex Systems Society and the Santa Fe Institute. from http://cs-dc-15.org/
2018 Seminar in “Mother-Infant Attachment and Supercomputing”, NY. USA and Porto Alegre, Brazil, August 09. https://www.comses.net/events/499/
2019 Seminar in Experimental and Computational Studies on Mother-Infant Relationship October 8 and 15, 2019 ICBS, /Determine the neural pathways by which the nervous system of the neonates establish attachment with their mothers is a problem that has motivated hypothesis and experiments at several scale levels, from neurotransmission to ethological level. UFRGS, Porto Alegre, Brazil. https://www.comses.net/events/549/
2020 Seminar in Maternal Infant Relationship Studies: Neuroscience and Artificial Intelligence March 7 and 9
Goals 1. Discuss a Roadmap for mother-Infant relationship research in the framework of the UNESCO Complex System Digital Campus project. https://www.comses.net/events/570/ https://sites.google.com/view/envermiguel/seminar-in-maternal-infant-relationship-studies?read_current=1
https://drive.google.com/file/d/1-FVQXBXy4RLKIQA-RBx3KFLJxyBsnyCW/view?usp=sharing
Linea de investigacion: Estrategias de modelamiento en Psicobiologia y Psicologia Social
/ Linea estrategica 1: bases biologicas de la cognicion social desde sistemas complejos
Network ABMS in solar technology adoption in households
Displaying 10 of 26 results physics clear search