Computational Model Library

Bayesian Updating Opinion Shared Uncertainty Model.

Johnathan Adams | Published Mon Nov 16 23:25:02 2020 | Last modified Tue Dec 1 01:27:29 2020

This is an opinion dynamics model which extends the model found in (Martins 2009). The previous model had an unshared uncertainty assumption in agent-to-agent interaction this model relaxes that assumption. The model only supports a fully connect network where every agent has an equal likelihood of interacting with every other agent at any given time step. The model is highly modular so different social network paradigm can easier be implemented.

Gender desegregation in German high schools

Klaus Troitzsch | Published Tue Feb 5 10:12:23 2019 | Last modified Sun Nov 8 15:38:18 2020

The study goes back to a model created in the 1990s which successfully tried to replicate the changes of the percentages of female teachers among the teaching staff in high schools (“Gymnasien”) in the German federal state of Rheinland-Pfalz. The current version allows for additional validation and calibration of the model and is accompanied with the empirical data against which the model is tested and with an analysis program especially designed to perform the analyses in the most recent journal article.

Peer reviewed JuSt-Social COVID-19

Jennifer Badham | Published Thu Jun 18 15:05:58 2020 | Last modified Thu Oct 22 15:08:10 2020

NetLogo model that allows scenarios concerning general social distancing, shielding of high-risk individuals, and informing contacts when symptomatic. Documentation includes a user manual with some simple scenarios, and technical information including descriptions of key procedures and parameter values.

Peer reviewed Multilevel Group Selection I

Garry Sotnik Thaddeus Shannon Wayne W. Wakeland | Published Tue Apr 21 18:07:27 2020 | Last modified Sat Sep 26 01:41:46 2020

The Multilevel Group Selection I (MGS I) model simulates a population of contributing and non-contributing agents, competing on a social landscape for higher-value spots in an effort to withstand some selection pressure. It may be useful to both scientists and students in hypothesis testing, theory development, or more generally in understanding multilevel group selection.

This model was developed to test the usability of evolutionary computing and reinforcement learning by extending a well known agent-based model. Sugarscape (Epstein & Axtell, 1996) has been used to demonstrate migration, trade, wealth inequality, disease processes, sex, culture, and conflict. It is on conflict that this model is focused to demonstrate how machine learning methodologies could be applied.

The code is based on the Sugarscape 2 Constant Growback model, availble in the NetLogo models library. New code was added into the existing model while removing code that was not needed and modifying existing code to support the changes. Support for the original movement rule was retained while evolutionary computing, Q-Learning, and SARSA Learning were added.

Peer reviewed MGA - Minimal Genetic Algorithm

Cosimo Leuci | Published Tue Sep 3 07:52:29 2019 | Last modified Thu Jan 30 08:42:08 2020

Genetic algorithms try to solve a computational problem following some principles of organic evolution. This model has educational purposes; it can give us an answer to the simple arithmetic problem on how to find the highest natural number composed by a given number of digits. We approach the task using a genetic algorithm, where the candidate solutions to the problem are represented by agents, that in logo programming environment are usually known as “turtles”.

Leviathan - Single Group Model

Thibaut Roubin | Published Thu Sep 17 15:21:40 2020

The model is based on the influence function of the Leviathan model (Deffuant, Carletti, Huet 2013 and Huet and Deffuant 2017), considering that all the agents belong to the same ingroup. This agent-based model studies how sharing the same group identity reduce the potential negative effect of gossip.

We consider agents sharing a single group, having an opinion/esteem about each other, about themselves and about the group. During dyadic meetings, agents change their respective opinion about each other, about the group, and possibly about other agents they gossip about, with a noisy perception of the opinions of their interlocutor. Highly valued agents are more influential in such encounters. The expressed opinion of an agent about another one is a combination of the opinion about the other agent and the opinion about the group.

We show that the addition of the group in the Leviathan model reduce the discrepancy between reputations, even if the group is not very important for the agents. In addition, the homogenization of the opinions reduce the negative effect of gossip.

The uFUNK Model

Davide Secchi | Published Mon Aug 31 11:35:44 2020

The agent-based simulation is set to work on information that is either (a) functional, (b) pseudo-functional, (c) dysfunctional, or (d) irrelevant. The idea is that a judgment on whether information falls into one of the four categories is based on the agent and its network. In other words, it is the agents who interprets a particular information as being (a), (b), (c), or (d). It is a decision based on an exchange with co-workers. This makes the judgment a socially-grounded cognitive exercise. The uFUNK 1.0.2 Model is set on an organization where agent-employee work on agent-tasks.

Peer reviewed BAM: The Bottom-up Adaptive Macroeconomics Model

Alejandro Platas López | Published Tue Jan 14 17:04:32 2020 | Last modified Sun Jul 26 00:26:21 2020

Overview

Purpose

Modeling an economy with stable macro signals, that works as a benchmark for studying the effects of the agent activities, e.g. extortion, at the service of the elaboration of public policies..

The model simulates the spread of a virus through a synthetic network with a degree distribution calibrated on close-range contact data. The model is used to study the macroscopic consequences of cross-individual variability in close-range contact frequencies and to assess whether this variability can be exploited for effective intervention targeting high-contact nodes.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.