MOOvPOPsurveillance incorporates real-world disease distribution and harvest heterogeneities, and can be used to simulate disease surveillance strategies under alternate assumptions. The model can be used to determine population-specific sample sizes for prompt detection of wildlife diseases like chronic wasting disease (CWD). MOOvPOPsurveillance is initialized with model-generated ( MOOvPOP: https://www.comses.net/codebases/5585/releases/2.2.0/ ) pre-harvest deer population snapshot (abundance, sex-age composition and distribution in the landscape) for selected sampling regions in Missouri. CWD+ deer are then distributed in the landscape under one of the two assumptions: random or clustered distribution. User selects the sampling region, age-sex class wise distribution of CWD prevalence, age-sex class wise sample sizes (proportion of harvest tested) and sampling method (random or non-random). Three processes are implemented: 1) individual growth (age of every deer increases by one month), 2) non-hunting mortality (determined by age- and sex- specific monthly mortality rates), and 3) hunting mortality and CWD testing. MOOvPOPsurveillance runs for one time-step (one month), and provides following outputs: total number of adult deer (male and female) remaining in the population after harvest, number of CWD+ deer in the population, in the hunter harvest, and in the sample (deer tested for CWD).
Release Notes
Create an empty ‘results’ folder in the same folder as that of the model - output file is saved in this folder.
Associated Publications
Belsare, A.V., Gompper, M.E., Keller, B.J., Sumners, J.A., Hansen, L.P., and Millspaugh, J.J. An agent-based framework for improving wildlife disease surveillance: A case study of chronic wasting disease in Missouri white-tailed deer. 2020. Ecological Modelling 417 (108919). (F1000Prime Recommended Article).
Belsare, A.V., Gompper, M.E., Keller, B.J., Sumners, J.A., Hansen, L.P., and Millspaugh, J.J. Size Matters: Sample size assessments for chronic wasting disease surveillance using an agent-based modeling framework. 2020. MethodsX 7(100953). https://doi.org/10.1016/j.mex.2020.100953.
Mysterud A, Viljugrein H, Rolandsen CM, Belsare AV. 2021 Harvest strategies for the elimination of low prevalence wildlife diseases. R. Soc. Open Sci. 8: 210124. https://doi.org/10.1098/rsos.210124
This release is out-of-date. The latest version is
2.2.0
MOOvPOPsurveillance 2.1.2
Submitted byAniruddha BelsarePublished Aug 08, 2019
Last modified Apr 06, 2022
MOOvPOPsurveillance incorporates real-world disease distribution and harvest heterogeneities, and can be used to simulate disease surveillance strategies under alternate assumptions. The model can be used to determine population-specific sample sizes for prompt detection of wildlife diseases like chronic wasting disease (CWD). MOOvPOPsurveillance is initialized with model-generated ( MOOvPOP: https://www.comses.net/codebases/5585/releases/2.2.0/ ) pre-harvest deer population snapshot (abundance, sex-age composition and distribution in the landscape) for selected sampling regions in Missouri. CWD+ deer are then distributed in the landscape under one of the two assumptions: random or clustered distribution. User selects the sampling region, age-sex class wise distribution of CWD prevalence, age-sex class wise sample sizes (proportion of harvest tested) and sampling method (random or non-random). Three processes are implemented: 1) individual growth (age of every deer increases by one month), 2) non-hunting mortality (determined by age- and sex- specific monthly mortality rates), and 3) hunting mortality and CWD testing. MOOvPOPsurveillance runs for one time-step (one month), and provides following outputs: total number of adult deer (male and female) remaining in the population after harvest, number of CWD+ deer in the population, in the hunter harvest, and in the sample (deer tested for CWD).
Release Notes
Create an empty ‘results’ folder in the same folder as that of the model - output file is saved in this folder.
Cite this Model
Aniruddha Belsare, Matthew Gompper, Joshua J Millspaugh (2019, August 08). “MOOvPOPsurveillance” (Version 2.1.2). CoMSES Computational Model Library. Retrieved from: https://doi.org/10.25937/8hpz-9y96
Associated Publication(s)
Belsare, A.V., Gompper, M.E., Keller, B.J., Sumners, J.A., Hansen, L.P., and Millspaugh, J.J. An agent-based framework for improving wildlife disease surveillance: A case study of chronic wasting disease in Missouri white-tailed deer. 2020. Ecological Modelling 417 (108919). (F1000Prime Recommended Article).
Belsare, A.V., Gompper, M.E., Keller, B.J., Sumners, J.A., Hansen, L.P., and Millspaugh, J.J. Size Matters: Sample size assessments for chronic wasting disease surveillance using an agent-based modeling framework. 2020. MethodsX 7(100953). https://doi.org/10.1016/j.mex.2020.100953.
Mysterud A, Viljugrein H, Rolandsen CM, Belsare AV. 2021 Harvest strategies for the elimination of low prevalence wildlife diseases. R. Soc. Open Sci. 8: 210124. https://doi.org/10.1098/rsos.210124
Create an Open Code Badge that links to this model more info
This model has not been reviewed by CoMSES Net and should be independently reviewed to
meet the Open Code Badge guidelines.
You can use the following HTML or Markdown code to create an Open Code Badge that links to
version 2.1.2
of this computational model.
This website uses cookies and Google Analytics to help us track user engagement and improve our site. If
you'd like to know more information about what data we collect and why, please see
our data privacy policy. If you continue to use this site, you consent to
our use of cookies.