Didier’s Research:
are related to interoperability and conflation models in geospatial analysis and integrated modelling applications, particularly in the context of spatial data infrastructures such as GEOSS. This translates to a focus on geospatial statistics, geospatial patterns, outbreak detection and geospatial data mining in general, but also to data quality and uncertainty propagation principles in relation to geoworkflows connected to/using web services. Didier’s research centres on environmental agro-ecological geospatial models, and public health and spatial epidemiology applications. (see website)
Research focuses on the coupled dynamics of human and natural systems, specifically in the context of forest dynamics. I utilize a variety of modeling and analysis techniques, including agent-based modeling, cellular automata, machine learning and various spatial statistics and GIS-related methods. I am currently involved in projects that investigate the anthropogenic and biological drivers behind native and invasive forest pathogens and insects.
My research is focused on understanding the importance of spatial and temporal environmental variability on communities and populations. The key question I aim to address is how the anthropogenic impacts, such as disturbances of individual animals or changed landscape heterogeneity associated with climate changes, influence the persistence of species. The harbour porpoise is an example of a species that is influenced by anthropogenic disturbances, and much of my research has focused on how the Danish porpoise populations are influenced by noise from offshore constructions. I use a wide range of modelling tools to assess the relative importance of different sources of environmental variation, including individual-based/agent based models, spatial statistics, and classical population models. This involves development of computer programs in R and NetLogo. In addition to my own research I currently supervise three PhD students and participate in the management of Department of Bioscience at Aarhus University.
Using Bayesian statistics for improving Agent based models and visa versa.
Agent Based Modelling for spatial systems
I use agent-based systems, stochastic process, mass balance models and computational statistics in exploring human exposure assessment.
My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.
Development of spatial agent-based models to sustainability science and ecosystem service assessment, integration of agent-based model with biophysical process based model, improvement of theory of GIScience and land use change science, development of spatial analytical approach (all varieties of spatial regression), spatial data modeling including data mining, linking processes such as climate change, market, and policy to study patterns.