Community

Displaying 7 of 7 results concepts clear

Vojtech Kase Member since: Fri, Feb 20, 2015 at 01:49 PM Full Member Reviewer

MA

I am interested in the dynamics of cultural transmission, especially in diffusion of religious innovations (concepts and practices) across a population. In my dissertation, I am targeting this issue while studying and modelling the development of Christian meal practices in the first four centuries CE across the Roman Mediterranean.

Volker Grimm Member since: Wed, Jul 18, 2007 at 11:13 AM Full Member Reviewer

Volker Grimm currently works at the Department of Ecological Modelling, Helmholtz-Zentrum für Umweltforschung. Volker does research in ecology and biodiversity research.

How to model it: Ecological models, in particular simulation models, often seem to be formulated ad hoc and only poorly analysed. I am therefore interested in strategies and methods for making ecological modelling more coherent and efficient. The ultimate aim is to develop preditive models that provide mechanstic understanding of ecological systems and that are transparent and structurally realistic enough to support environmental decision making.

Pattern-oriented modelling: This is a general strategy of using multiple patterns observed in real systems as multiple criteria for chosing model structure, selecting among alternative submodels, and inversely determining entire sets of unknown model parameters.

Individual-based and agent-based modelling: For many, if not most, ecological questions individual-level aspects can be decisive for explaining system-level behavior. IBM/ABMs allow to represent individual heterogeneity, local interactions, and/or adaptive behaviour

Ecological theory and concepts: I am particularly interested in exploring stability properties like resilience and persistence.

Modelling for ecological applications: Pattern-oriented modelling allows to develop structurally realistic models, which can be used to support decision making and the management of biodiversity and natural resources. Currently, I am involved in the EU project CREAM, where a suite of population models is developed for pesticide risk assessment.

Standards for model communication and formulation: In 2006, we published a general protocol for describing individual- and agent-based models, called the ODD protocol (Overview, Design concepts, details). ODD turned out to be more useful (and needed) than we expected.

Gerd Wagner Member since: Sun, Jan 23, 2011 at 08:23 PM Full Member Reviewer

MSc (German Diplom) in Mathematics, PhD in Philosophy

Gerd Wagner is Professor of Internet Technology at Brandenburg University of Technology, Cottbus, Germany. After studying Mathematics, Philosophy and Informatics in Heidelberg, San Francisco and Berlin, he (1) investigated the semantics of negation in knowledge representation formalisms, (2) developed concepts and techniques for agent-oriented modeling and simulation, (3) participated in the development of a foundational ontology for conceptual modeling, the Unified Foundational Ontology (UFO), and (4) created a new Discrete Event Simulation paradigm, Object Event Modeling and Simulation (OEM&S), and a new process modeling language, the Discrete Event Process Modeling Notation (DPMN). Much of his recent work on OEM&S and DPMN is available from sim4edu.com.

Modeling and simulation of agents and other discrete systems.

Pieter Van Oel Member since: Mon, Apr 13, 2015 at 07:11 AM

PhD

I am fascinated by unraveling water-scarcity patterns. I am an expert in Integrated Assessment Modelling and Water Footprint Assessment. The concepts and tools that I have developed and applied all aim at availing knowledge at scales relevant to decision-makers in the water sector. During my PhD at the University of Twente I evaluated how spatiotemporal patterns of water availability relate to patterns of water use for a river basin in the semi-arid Northeast of Brazil. I have used agent-based modelling and developed the downstreamness concept to analyze the emergence of basin closure. This concept is helpful to water managers for identifying priority locations for intervention inside a river basin system. As a postdoc I continued to evaluate the relation between water use and availability and further broadened my scope to a wider range of related topics.

Amineh Ghorbani Member since: Tue, Aug 20, 2019 at 01:44 PM Full Member

Amineh Ghorbani is an assistant professor at the Engineering Systems and Services Department, Delft University of Technology, the Netherlands. She is also an affiliated member of the “Institutions for Collective Action” at Utrecht University. She obtained her M.Sc. in Computer Science (Artificial intelligence) from University of Tehran (Iran) (2009, honours) and her PhD from Delft University of Technology (2013, cum laude).

During her PhD, Amineh developed a meta-model for agent-based modelling, called MAIA, which describes various concepts and relations in a socio-technical system. This modelling perspective helped her develop a modelling paradigm that she refers to as institutional modelling.

Her current area of research is understanding the emergence and dynamics of institutions (set of rule organizing human society) using modelling. She is interested in how bottom-up collective action emerges and how institutions emergence and change within communities.

collective action
institutional emergence
evolution of institutions
community energy systems

Roger Cremades Member since: Wed, Apr 01, 2020 at 06:59 AM Full Member

PhD, Natural Sciences, University of Hamburg

Dr. Roger Cremades is a complex systems scientist and heterodox global change economist integrating human-Earth interactions across systems and scales into modular quantitative tools, e.g. connecting drought risks in cities with land use at the river basin scale. He is elected Council member of the Complex Systems Society (2022-2025) and previously served as co-Chair of the Development Team of the Finance and Economics Knowledge-Action Network of Future Earth, the largest global research programme in global change (2020-2022). Roger coordinated research and co-production projects above €1M, and published in top journal like PNAS, Nature Climate Change, and Nature Geoscience. As a scientific modeler in the Social and Ecological Sciences, Roger integrates complex systems concepts into integrated assessment models of global change, with a focus on cities.

The future of CoMSES.Net, in Roger’s vision, is to augment its projection into a hub for discussing state-of-the-art approaches on modeling for the Social and Ecological Sciences, e.g. via bi-annual webinars, so that the Model Library becomes a lighthouse from where all communities developing, sharing, using, and reusing agent-based and other computational models also find valuable discussions to advance their research, education, and computational practice.

Global change, human-Earth interactions, complex systems.

William Rand Member since: Wed, Oct 24, 2007 at 05:11 PM Full Member Reviewer

PhD, Computer Science, University of Michigan, Certificate of Study, Center for the Study of Complex Systems, University of Michigan, MS, Computer Science, University of Michigan, BS, Computer Science, Michigan State University, BA, Philosophy, Michigan State University

The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.

My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept