Displaying 10 of 186 results modeling clear search
My main interests are system dynamics and multi agent simulation used for support of business and marketing decisions (e.g. modeling of consumer markets) and in business education (e.g. development of open source business simulators). Amongst my other interests are applied marketing research, relationships between academia and industry, financial literacy, mind and concept mapping.
Andrew Crooks is an Associate Professor with a joint appointment between the Computational Social Science Program within the Department of Computational and Data Sciences and the Department of Geography and GeoInformation Science, which are part of the College of Science at George Mason University. His areas of expertise specifically relate to integrating agent-based modeling (ABM) and geographic information systems (GIS) to explore human behavior. Moreover, his research focuses on exploring and understanding the natural and socio-economic environments specifically urban areas using GIS, spatial analysis, social network analysis (SNA), Web 2.0 technologies and ABM methodologies.
GIS, Agent-based modeling, social network analysis
My research interests include policy informatics and decision making, modeling in policy analysis and management decisions, public health management and policy, and the role of public value in policy development. I am particularly interested in less mainstream approaches to modeling that account for learning, feedback, and other systems dynamics. I include Bayesian inference, agent-based models, and behavioral assumptions in both my research and teaching.
In my dissertation research, I conceptualize state Medicaid programs as complex adaptive systems characterized by diverse actors, behaviors, relationships, and objectives. These systems reproduce themselves through both strategic and emergent mechanisms of program management. I focus on the mechanism by which citizens are sorted into or out of the system: program enrollment. Using Bayesian regression and agent-based models, I explore the role of administrative practices (such as presumptive eligibility and longer continuous eligibility periods) in increasing enrollment of eligible citizens into Medicaid programs.
Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).
The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.
Modeling coupled natural/human systems, climate impacts and mitigation policy.
Mathematical modeling and simulation in social sciences, biology, physics, and signal processing.
As a Program Associate in the Research Competitiveness Program, I work on a diverse portfolio of science and technology based development projects. These projects frequently involve managing peer-review processes for grant competitions and other research and development activities as well as producing their associated progress reports. Projects are often associated with the regional and national development plans of various governments and institutions both domestic and international.
Modeling, companion modeling, role playing games, serious games, multi-agent systems, agent-oriented simulation, complex systems, water management, artificial intelligence
I work as a Senior Researcher at the Centre for Modeling Social Systems (CMSS) at the Norwegian Research Centre (NORCE) sinde 2023. Before, I worked as an Expert Research Engineer at the CEA LIST Institute, Paris-Saclay University in France from 2013 to 2023. I hold a PhD in Artificial Intelligence degree from the Paul Sabatier University (France) and a PhD in Computer Engineering degree from the Ege University (Turkey).
I work in the field of complex adaptive systems, specializing in multi-agent systems, simulation, machine learning, collective intelligence, self-organization, and self-adaptation. I am interested in contributing to innovative projects and research in these domains.
My experience spans across multiple large-scale international research projects in areas such as green urban logistics, blockchain for nuclear applications, autonomous robotics systems and simulation of biological neural networks.
Agent Based Modeling (ABM), Agent Based Social System (ABSS), Multi-Agent Systems (MAS), Bayesian learning, Social networks Analysis (SNA), Socio ecological Dynamics.
Displaying 10 of 186 results modeling clear search