Displaying 10 of 64 results learning clear search
I am a University Academic Fellow (UAF) in the School of Geography at the University of Leeds. My research areas are agent-based modelling, decision making in complex systems, AI and multi-agent systems, urban analytics and housing markets. I obtained PhD in Economics from Iowa State University under supervisor Prof. Leigh Tesfatsion in 2014. I worked as a researcher at the James Hutton Institute in Aberdeen, Scotland between 2014 and 2019. I joined the University of Leeds as a UAF of Urban Analytics in 2019. I am originally from Shanghai, China.
My main research areas are agent-based modelling, urban analytics and complex decision making enabled by AI. I am interested in the bottom-up transition of complex urban systems under major socio-economic and environmental shocks, such as climate change and the fourth industrial revolution. I want to understand how cities as self-organised complex systems respond to external shocks and evolve under a constantly changing environment. In the past, I have looked at various aspects of urban systems, including the housing market, the labour market, transport and energy system. I am also interested in decision making in complex systems. For example, I have studied the decision to become a vegetarian/vegan under social influence. I have also looked at global food trade in a complex trade network and the resulting food and nutrition security. Recently, I am interested in applying AI algorithms especially reinforcement learning in multi-agent systems, including applications of AI in urban adaptation to climate change, housing market dynamics and criminal behaviour in an urban system.
Dr. Chairi Kiourt is a research associate with the ATHENA - Research and Innovation Centre in Information, Communication and Knowledge Technologies - Xanthi’s Division, multimedia department since 2014. Also, as of December 2017, heis PostDoctoral researcher with the Hellenic Open University, School of Science and Technology, and as of 2018, visiting Lecturer at the Department of Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, Greece.
In 2003, he received his BSc degree in Electrical Engineering from the Electrical Engineering Department of the Eastern Macedonia and Thrace Institute of Technology, Greece. He also received an M.Sc. in System Engineering and Management in the specialty area: A. Information and Communication Systems Management from the Democritus University of Thrace, Greece. In 2017, received his PhD in Artificial Intelligence and Software Engineering from the Hellenic Open University. He has participated in several national and European research programs and co- authored to the writing of several scientific publications in international peer-reviewed journals and conferences with judges in the fields of collective artificial intelligence, multi-agent systems, reinforcement learning agents, virtual worlds, virtual museums and gamification.
Game playing multi-agent systems, reinforcement learning, colelctive artificial intelligence, distributed computing systems, virtual worlds, gamification
Agent-based Modeling, Maching Learning, Algorithmic Marketing, Diffusion of Innovations, Online Communities
Interested in learning how to accurately model social power, diffusion of ideas, social exchange
The main research area is operation research in logistics with a focus on logistic cluster development and innovative technology usage. Due to mathematical background, Gružauskas focuses on quantitative analysis by conducting simulations, stochastic and dynamic models and other analytical approaches to amplify the developed theories. Gružauskas also is working as a freelance data analyst with a focus on statistical analysis, web scraping and machine learning.
GIS enthusiast and ABM practitioner
Urban Mobility
Machine Learning
Social Network Analysis
Crime Simulation
Lu Ping is a dedicated researcher in interdisciplinary fields including artificial intelligence (AI), digital economy, technological innovation, and industrial economics. Currently serving as an Associate Research Fellow at the China Academy of Information and Communications Technology (CAICT), Lu Ping focuses on examining the impacts of digital technologies (e.g., AI, big data, and IoT) on economic growth, industrial ecosystems, policy formulation, and societal ethics through multidimensional data modeling and empirical research.
Representative Academic Contributions:
1. AI Development and Societal Implications
A Brief History of Artificial Intelligence Development in China (2017): Explored the technological evolution and policy-driven pathways of China’s AI industry.
Ethical Dilemmas Faced by AI Algorithms (2018): Analyzed ethical challenges such as algorithmic bias and data privacy, proposing governance frameworks.
A Brief History of the Evolution of Smart Hardware in China (2018): Systematically reviewed the technological iterations and market dynamics of China’s smart hardware sector.
2.Technological Innovation and Industrial Economics
An Empirical Analysis of Technological Innovation Driving Growth in Internet Companies: Evidence from A-Share Listed Internet Firms in Shanghai and Shenzhen (2019).
Research on Competitiveness Measurement of Frontier Emerging Industries Based on Data Envelopment Analysis (DEA) Models (2019).
3.Digital Economy and Market Behavior
Correlation Analysis of Crowdfunding Behavior and Funding Performance for Internet Products: A Bayesian Approach Based on JD.com Crowdfunding Data (2018): Uncovered nonlinear relationships between user participation and project success rates using crowdfunding platform data.
Analyzing the Effects of Developer and User Behavior on Mobile App Downloads (2019): Built predictive models for app market performance based on user behavior data.
4.Policy Simulation
General Equilibrium Analysis of Beijing’s Water Supply and Consumption Policies: A Computable General Equilibrium (CGE) Model-Based Approach (2015).
Impact Analysis of EU Food Safety Standards on China’s Food Industry: A Dynamic Global Trade Analysis Project (GTAP) Model-Based Study (2015).
Academic Contributions:
Pioneered interdisciplinary paradigms in industrial economics research by integrating perspectives from econometrics, data science, and sociology. Published high-impact research in AI ethics, digital economy policies, and resource-environmental economics, providing decision-making references for academia and policymakers.
My research focuses on the interdisciplinary nexus of artificial intelligence (AI), digital economy, technological innovation, and industrial economics, with an emphasis on understanding how digital technologies reshape economic structures, policy frameworks, and societal norms. Key areas of interest include:
Positions held today:
• Associate Professor for Geoinformatics and Ecology at the University of Salzburg (since 2017)
• UNIGIS Program Director (since 2020)
• Head of the Research Group “Spatial Simulation” (since 2013)
Major academic milestones:
• Assistant Professor, Department for Geoinformatics, University of Salzburg (2013-2017)
• Associate Faculty in the FWF Doctoral College “GIScience” (2013-2017)
• Director of Studies UNIGIS MSc distance learning programs, University of Salzburg (2012-2020)
• PhD at the University of Innsbruck on ecological modelling (2011)
• Research Assistant Austrian Academy of Sciences, GIScience Institute (2007-2011)
• Magistra in Ecology, Univ. of Innsbruck (2001) and MSc in GIS, Univ. of Edinburgh (2006)
Spatially-explicit simulation modelling of complex, ecological systems:
* the added value of spatially-explicit modelling
* Hybrid agent-based and system-dynamics modelling in ecology
* Agent-based models, Cellular Automata
I am a Ph.D. candidate in Computational Social Science (CSS) program at George Mason (GMU). I hold a MAIS from GMU and a Bachelor of Economics from the University of Tasmania. My research interests are the application of ABMs, network analysis, and machine learning to financial markets. My email address and website is [email protected] and www.aussiecas.com
I am interested in using agent-based model to understand the behavior of financial markets
Displaying 10 of 64 results learning clear search