Community

Displaying 8 of 98 results for "Chelsea E Hunter" clear search

Volker Grimm Member since: Wed, Jul 18, 2007 at 11:13 AM Full Member

Volker Grimm currently works at the Department of Ecological Modelling, Helmholtz-Zentrum für Umweltforschung. Volker does research in ecology and biodiversity research.

How to model it: Ecological models, in particular simulation models, often seem to be formulated ad hoc and only poorly analysed. I am therefore interested in strategies and methods for making ecological modelling more coherent and efficient. The ultimate aim is to develop preditive models that provide mechanstic understanding of ecological systems and that are transparent and structurally realistic enough to support environmental decision making.

Pattern-oriented modelling: This is a general strategy of using multiple patterns observed in real systems as multiple criteria for chosing model structure, selecting among alternative submodels, and inversely determining entire sets of unknown model parameters.

Individual-based and agent-based modelling: For many, if not most, ecological questions individual-level aspects can be decisive for explaining system-level behavior. IBM/ABMs allow to represent individual heterogeneity, local interactions, and/or adaptive behaviour

Ecological theory and concepts: I am particularly interested in exploring stability properties like resilience and persistence.

Modelling for ecological applications: Pattern-oriented modelling allows to develop structurally realistic models, which can be used to support decision making and the management of biodiversity and natural resources. Currently, I am involved in the EU project CREAM, where a suite of population models is developed for pesticide risk assessment.

Standards for model communication and formulation: In 2006, we published a general protocol for describing individual- and agent-based models, called the ODD protocol (Overview, Design concepts, details). ODD turned out to be more useful (and needed) than we expected.

Hassan Bashiri Member since: Tue, Apr 28, 2015 at 06:11 AM Full Member Reviewer

PhD

I am an assistant professor in the Department of Computer Science at the Hamedan University of Technology, Hamedan, IRAN. I have completed my Ph.D. in Futures Studies (foresight) as an interdisciplinary field, an intersection of social sciences and engineering. My
background comes from computer science. For my Ph.D., I decided to pursue my education in Futures Studies; the field I thought I could apply engineering principles such as requirements engineering, analytical skills, design, modeling, planning, and, test engineering to shape the
desired futures. In PhD, I started the complex systems research field and agent-based modeling with NetLogo. In addition to several publications of papers, I published a book on complex systems titled “Futures Studies in Complex Systems” which was awarded as the book of the year by the Iranian Foresight Association.

Since May 2021, I started a research collaboration with TISSS Lab at the Johannes Gutenberg University Mainz as a project coordinator, the German Research Centre for AI, Human-Centered Multimedia, and the Centre for Research in Social Simulation. The project title is “AI for Assessment” and its objective is to understand the status quo and the future options of AI-based social assessment in public service provisions to help in the creation of improved AI technology for social welfare systems.

On the executive side, I have also various experiences, including head of the department, deputy of the Technology Incubator Center, director of university’s research affairs, and head of the International Scientific Cooperation Office.

Complex Systems, Social Modeling and Simulation
Engineering the Futures

David Earnest Member since: Sat, Mar 13, 2010 at 03:46 PM Full Member

Ph.D. in political science (2004), M.A. in security policy studies (1994)

Two themes unite my research: a commitment to methodological creativity and innovation as expressed in my work with computational social sciences, and an interest in the political economy of “globalization,” particularly its implications for the ontological claims of international relations theory.

I have demonstrated how the methods of computational social sciences can model bargaining and social choice problems for which traditional game theory has found only indeterminate and multiple equilibria. My June 2008 article in International Studies Quarterly (“Coordination in Large Numbers,” vol. 52, no. 2) illustrates that, contrary to the expectation of collective action theory, large groups may enjoy informational advantages that allow players with incomplete information to solve difficult three-choice coordination games. I extend this analysis in my 2009 paper at the International Studies Association annual convention, in which I apply ideas from evolutionary game theory to model learning processes among players faced with coordination and commitment problems. Currently I am extending this research to include social network theory as a means of modeling explicitly the patterns of interaction in large-n (i.e. greater than two) player coordination and cooperation games. I argue in my paper at the 2009 American Political Science Association annual convention that computational social science—the synthesis of agent-based modeling, social network analysis and evolutionary game theory—empowers scholars to analyze a broad range of previously indeterminate bargaining problems. I also argue this synthesis gives researchers purchase on two of the central debates in international political economy scholarship. By modeling explicitly processes of preference formation, computational social science moves beyond the rational actor model and endogenizes the processes of learning that constructivists have identified as essential to understanding change in the international system. This focus on the micro foundations of international political economy in turn allows researchers to understand how social structural features emerge and constrain actor choices. Computational social science thus allows IPE to formalize and generalize our understandings of mutual constitution and systemic change, an observation that explains the paradoxical interest of constructivists like Ian Lustick and Matthew Hoffmann in the formal methods of computational social science. Currently I am writing a manuscript that develops these ideas and applies them to several challenges of globalization: developing institutions to manage common pool resources; reforming capital adequacy standards for banks; and understanding cascading failures in global networks.

While computational social science increasingly informs my research, I have also contributed to debates about the epistemological claims of computational social science. My chapter with James N. Rosenau in Complexity in World Politics (ed. by Neil E. Harrison, SUNY Press 2006) argues that agent-based modeling suffers from underdeveloped and hidden epistemological and ontological commitments. On a more light-hearted note, my article in PS: Political Science and Politics (“Clocks, Not Dartboards,” vol. 39, no. 3, July 2006) discusses problems with pseudo-random number generators and illustrates how they can surprise unsuspecting teachers and researchers.

Steve Peck Member since: Fri, Apr 24, 2020 at 03:31 PM Full Member Reviewer

Biographical Sketch

(a) Professional Preparation

Brigham Young University Statistics & Computer Science B.S. 1986
University of North Carolina Chapel Hill Biostatistics M.S. 1988
North Carolina State University Biomathematics & Entomology Ph.D. 1997

(b) Appointments

Associate Professor 2006-current: Brigham Young University Department of Biology
Assistant Professor 2000-2006: Brigham Young University Department of Integrative Biology
Research Scientist 1997-1999: Agriculture Research Service-USDA Pacific Basin Agricultural Research Center.

(c) Publications

i. Five most relevant publications

Ahmadou H. Dicko, Renaud Lancelot, Momar Talla Seck, Laure Guerrini, Baba Sall, Mbargou Low, Marc J.B. Vreysen, Thierry Lefrançois, Fonta Williams, Steven L. Peck, and Jérémy Bouyer. 2014. Using species distribution models to optimize vector control: the tsetse eradication campaign in Senegal. Proceedings of the National Academy of Science. 11 (28) : 10149-10154
Peck, S. L. 2014. Perspectives on why digital ecologies matter: Combining population genetics and ecologically informed agent-based models with GIS for managing dipteran livestock pests. Acta Tropica. 138S (2014) S22–S25
Peck, S. L. and Jérémy Bouyer. 2012. Mathematical modeling, spatial complexity, and critical decisions in tsetse control. Journal of Economic Entomology 105(5): 1477—1486.
Peck, S. L. 2012. Networks of habitat patches in tsetse fly control: implications of metapopulation structure on assessing local extinction probabilities. Ecological Modelling 246: 99–102.
Peck, S. L. 2012. Agent-based models as fictive instantiations of ecological processes.” Philosophy & Theory in Biology. Vol. 4.e303 (2012): 12

ii. Five other publications of note

Peck, S. L. 2008. The Hermeneutics of Ecological Simulation. Biology and Philosophy 23:383-402.
K.M. Froerer, S.L. Peck, G.T. McQuate, R.I. Vargas, E.B. Jang, and D.O. McInnis. 2010. Long distance movement of Bactrocera dorsalis (Diptera: Tephritidae) in Puna, Hawaii: How far can they go? American Entomologist 56(2): 88-94
Peck, S. L. 2004. Simulation as experiment: a philosophical reassessment for biological modeling. Trends in Ecology and Evolution 19 (10): 530 534
Storer N.P., S. L. Peck, F. Gould, J. W. Van Duyn and G. G. Kennedy. 2003 Sensitivity analysis of a spatially-explicit stochastic simulation model of the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton. Economic Entomology. 96(1): 173-187
Peck, S. L., F. Gould, and S. Ellner. 1999. The spread of resistance in spatially extended systems of transgenic cotton: Implications for the management of Heliothis virescens (Lepidoptera: Noctuidae). Economic Entomology 92:1-16.

Julia Kasmire Member since: Wed, May 09, 2012 at 12:32 PM Full Member

MSc in Evolution of Language and Cognition, BA in Linguistics

About me
Name: Dr. Julia Kasmire
Position: Post-doctoral Research Fellow
Where: UK Data Services and Cathie Marsh Institute at the University of Manchester.
Short Bio
2004 - BA in Linguistics from the University of California in Santa Cruz, including college honours, departmental honours and one year of study at the University of Barcelona.
2008 - MSc in the Evolution of Language and Cognition from the University of Edinburgh, with a thesis on the effects of various common simulated population features used when modelling language learning agents.
2015 - PhD from Faculty of Technology, Policy and Management at the Delft University of Technology under the supervision of Prof. dr. ig. Margot Wijnen, Prof. dr. ig. Gerard P.J. Dijkema, and Dr. ig. Igor Nikolic. My PhD thesis and propositions can be found online, as are my publications and PhD research projects (most of which addressed how to study transitions to sustainability in the Dutch horticultural sector from a computational social science and complex adaptive systems perspective).
Additional Resources
Many of the NetLogo models I that built or used can be found here on my CoMSES/OpenABM pages.
My ResearchGate profile and my Academia.org profile provide additional context and outputs of my work, including some data sets, analytical resources and research skills endorsements.
My LinkedIn profile contains additional insights into my education and experience as well as skills and knowledge endorsements.
I try to use Twitter to share what is happening with my research and to keep abreast of interesting discussions on complexity, chaos, artificial intelligence, evolution and some other research topics of interest.
You can find my SCOPUS profile and my ORCID profile as well.

Complex adaptive systems, sustainability, evolution, computational social science, data science, empirical computer science, industrial regeneration, artificial intelligence

William Kennedy Member since: Wed, Mar 10, 2010 at 06:47 PM Full Member

BS, MS, PhD

Dr. William G. Kennedy, “Bill,” is continuing to learn in a third career, this time as an academic, a computational social scientist.

His first a career was in military service as a Naval Officer, starting with the Naval Academy, Naval PostGraduate School (as the first computer science student from the Naval Academy), and serving during the Cold War as part of the successful submarine-based nuclear deterrent. After six years of active duty service, he served over two decades in the Naval Reserves commanding three submarine and submarine-related reserve units and retiring after 30 years as a Navy Captain with several personal honors and awards.

His second career was in civilian public service: 10 years at the Nuclear Regulatory Commission and 15 years with the Department of Energy. At the NRC he rose to be an advisor to the Executive Director for Operations and the authority on issues concerning the reliance on human operators for reactor safety, participating in two fly-away accident response teams. He left the NRC for a promotion and to lead, as technical director, the entrepreneurial effort to explore the use of light-water and accelerator technologies for the production of nuclear weapons materials. That work led to him becoming the senior policy officer responsible for strategic planning and Departmental performance commitments, leading development of the first several DOE strategic plans and formal performance agreements between the Secretary of Energy and the President.

Upon completion of doctoral research in Artificial Intelligence outside of his DOE work, he began his third career as a scientist. That started with a fully funded, three-year post-doctoral research position in cognitive robotics at the Naval Research Laboratory sponsored by the National Academy of Science and expanding his AI background with research in experimental Cognitive Science. Upon completion, he joined the Center for Social Complexity, part of the Krasnow Institute for Advanced Study at George Mason University in 2008 where he is now the Senior Scientific Advisor. His research interests range from cognition at the individual level to models of millions of agents representing individual people. He is currently leading a multi-year project to characterize the reaction of the population of a mega-city to a nuclear WMD (weapon of mass destruction) event.

Dr. Kennedy holds a B.S. in mathematics from the U.S. Naval Academy, and Master of Science in Computer Science from the Naval PostGraduate School, and a Ph.D. in Information Technology from George Mason University and has a current security clearance. Dr. Kennedy is a member of Sigma Xi, the American Association for the Advancement of Science (AAAS), the Association for Computing Machinery (ACM), and a life member of Institute of Electrical and Electronics Engineers. He is a STEM volunteer with the Senior Scientists and Engineers/AAAS Volunteer Program for K-12 science, technology, engineering, and mathematics education in the DC-area schools.

Cognitive Science, Computational Social Science, Social Cognition, Autonomy, Cognitive Robotics

Francesc Bellaubi Member since: Thu, Jun 27, 2013 at 03:40 PM

PhD candidate

performance of urban water service provision, high levels of inequities and inefficiency persist. In terms of water distribution and cost, these undesirable patterns have a high impact on peri-urban areas usually populated by marginalized and poor populations. The high levels of Non-Revenue Water (NRW), together with the existence of corrupt practices and mismanagement of water utilities, remain a highly controversial issue.

This situation confronts rent-seeking theory directly, explaining the performance-corruption relationship (Repetto, 1986). The presumption is that low performance in water supply service provision results from corruption because rent-seeking occurs. Hence, the implementation of performance-oriented reforms in the water supply sector, such as regulation or private sector participation, will reduce corruption, increasing the efficiency of water service provision. Nevertheless, latest evidence shows that “key elements of good political governance have a positive effect on the access to water services in developing countries. In turn, private sector participation has little influence other than increasing internal efficiency of water providers” (Krausse, 2009).

Indeed the relation between governance, corruption and performance seems to be more complex than theory wants to acknowledge. It must be reviewed further than a simple cause-effect relationship. It appears that poor management of water utilities, evidenced by high levels of NRW, justifies new investments. Such practices can be encouraged by an “opportunistic management”, whilst at the same time maintaining an influential “hydrocratic elite” in the sphere of water control.

The present research proposal aims to understand the relation between mismanagement and corruption of water control practices in water supply service provision. The research examines how this relationship affects the performance of water service provision and relates to water supply governance models at municipal peri-urban level in three African countries.

To understand the mismanagement-corruption relationship, we look at different case studies of water supply service provision in Senegal, Ghana and Kenya. Each case represents a different governance model in terms of management practices, institutional and organizational settings, and the actors in place, which affects the performance of water service provision in terms of allocative efficiency and access to water (equity). Whether regulation, decentralization and private sector participation constitute possible ways to reduce corruption is examined in the context of water sector reform.

In a second step, we propose a theoretical model based on Agent Based Modelling (ABM) (Pahl-Wostl, 2007) to reproduce complex social networks under a Socio-Ecological System (SES) framework approach. The model will allow us to test whether collaborative governance in the form of collective action in a participatory and negotiated decision-making process for water control, can reduce corruption and increase performance.

The present research benefits from the project “Transparency and Integrity in Service Delivery in Sub-Saharan Africa”. This project, carried out by Transparency International (TI) in 8 Sub-Saharan countries, aims to increase access to education, health and water by improving transparency and integrity in basic service delivery. The proposal retains focus on Senegal, Ghana and Kenya in the water sector.

Key words: water control, mismanagement, corruption, performance, collaborative governance, modelling, collective action, negotiation, participation

Ping Lu Member since: Fri, Feb 24, 2017 at 04:47 AM Full Member Reviewer

Lu Ping is a dedicated researcher in interdisciplinary fields including artificial intelligence (AI), digital economy, technological innovation, and industrial economics. Currently serving as an Associate Research Fellow at the China Academy of Information and Communications Technology (CAICT), Lu Ping focuses on examining the impacts of digital technologies (e.g., AI, big data, and IoT) on economic growth, industrial ecosystems, policy formulation, and societal ethics through multidimensional data modeling and empirical research.
Representative Academic Contributions:
1. AI Development and Societal Implications
A Brief History of Artificial Intelligence Development in China (2017): Explored the technological evolution and policy-driven pathways of China’s AI industry.
Ethical Dilemmas Faced by AI Algorithms (2018): Analyzed ethical challenges such as algorithmic bias and data privacy, proposing governance frameworks.
A Brief History of the Evolution of Smart Hardware in China (2018): Systematically reviewed the technological iterations and market dynamics of China’s smart hardware sector.
2.Technological Innovation and Industrial Economics
An Empirical Analysis of Technological Innovation Driving Growth in Internet Companies: Evidence from A-Share Listed Internet Firms in Shanghai and Shenzhen (2019).
Research on Competitiveness Measurement of Frontier Emerging Industries Based on Data Envelopment Analysis (DEA) Models (2019).
3.Digital Economy and Market Behavior
Correlation Analysis of Crowdfunding Behavior and Funding Performance for Internet Products: A Bayesian Approach Based on JD.com Crowdfunding Data (2018): Uncovered nonlinear relationships between user participation and project success rates using crowdfunding platform data.
Analyzing the Effects of Developer and User Behavior on Mobile App Downloads (2019): Built predictive models for app market performance based on user behavior data.
4.Policy Simulation
General Equilibrium Analysis of Beijing’s Water Supply and Consumption Policies: A Computable General Equilibrium (CGE) Model-Based Approach (2015).
Impact Analysis of EU Food Safety Standards on China’s Food Industry: A Dynamic Global Trade Analysis Project (GTAP) Model-Based Study (2015).
Academic Contributions:
Pioneered interdisciplinary paradigms in industrial economics research by integrating perspectives from econometrics, data science, and sociology. Published high-impact research in AI ethics, digital economy policies, and resource-environmental economics, providing decision-making references for academia and policymakers.

My research focuses on the interdisciplinary nexus of artificial intelligence (AI), digital economy, technological innovation, and industrial economics, with an emphasis on understanding how digital technologies reshape economic structures, policy frameworks, and societal norms. Key areas of interest include:

  1. Artificial Intelligence & Digital Transformation
    Ethical and Governance Challenges of AI: Investigating algorithmic bias, data privacy, and accountability in AI systems; proposing frameworks for ethical AI development and deployment.
    AI Adoption and Economic Impact: Analyzing how AI-driven automation and innovation influence productivity, labor markets, and industrial competitiveness.
  2. Digital Economy & Platform Markets
    Crowdfunding, Sharing Economy, and Digital Platforms: Examining user behavior, market dynamics, and performance drivers in emerging digital ecosystems (e.g., crowdfunding campaigns, app markets).
    Digital Innovation and Entrepreneurship: Studying the role of technological innovation in firm growth, particularly in internet-based industries.
  3. Technological Innovation & Industrial Policy
    Innovation-Driven Industrial Competitiveness: Developing quantitative models (e.g., DEA, CGE) to assess the efficiency and competitiveness of emerging industries under technological disruption.
    Policy Evaluation and Simulation: Using computational modeling to analyze the economic and industrial impacts of trade policies, environmental regulations, and technological standards.
  4. Resource Economics & Sustainable Development
    Water Resource Management and Policy: Evaluating the economic and environmental trade-offs of water conservation policies through general equilibrium modeling.
    Global Trade and Food Security: Assessing the impacts of international trade regulations (e.g., food safety standards) on domestic industries and global supply chains.
  5. Cross-Disciplinary Methodological Innovation
    Integrating econometrics, data science, and behavioral economics to enhance the rigor and relevance of industrial and policy research.
    Leveraging big data analytics, machine learning, and agent-based modeling to uncover complex relationships in digital markets and technological ecosystems.

Displaying 8 of 98 results for "Chelsea E Hunter" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept