Yue Dou

No bio entered.

Amazon smallholder resilience

Yue Dou | Published Mon Sep 9 19:35:39 2019

The purpose of this agent-based model is to simulate the behaviors of small farming households in the Amazon estuary region and evaluate their resilience to external shocks with the presence of several government cash transfer programs.

TeleABM Unpublished

Yue Dou | Unpublished

International agricultural trade has changed land uses in trading countries, altering global food security and environmental sustainability. Studies have concluded that local land-use drivers are largely from global sources (e.g., trade increases deforestation in exporting countries). However, little is known about how these local land-use changes affect distant locations, namely the feedback between them. Yet these distant impacts and feedbacks can be significant for governing local land systems.
The framework of telecoupling (i.e., socioeconomic-environmental interactions between distant places) has been shown to be an effective conceptual tool to study international trade and the associated socio-economic and environmental impacts. However, a systems simulation tool to quantify the telecoupled causes and effects is still lacking. Here, we construct a new type of agent-based model (ABM) that can simulate land-use changes at multiple distant places (namely TeleABM, telecoupled agent-based model). We use soybean trade between Brazil and China as an example, where Brazil is the sending system and China is the receiving system because they are the world’s largest soybean exporter and importer respectively. We select one representative county in each country to calibrate and validate the model with spatio-temporal analysis of historical land-use changes and the empirical analysis of household survey data.
We describe the model following the ODD+D protocol, and validate the model results in each location respectively. We then illustrate how the aggregated farmer agents’ land-use behaviors in the sending system result in land-use changes in the receiving system, and vice versa. One scenario example (i.e., a high-tariff scenario) is given to demonstrate the results of TeleABM. Such a model allows us to advance the understanding of telecoupling features and the influence on land system science, and to test hypotheses about complex coupled human-natural systems (e.g., cascading effect).

TeleABM

Yue Dou | Published Tue Dec 10 20:25:14 2019 | Last modified Wed Apr 29 13:08:15 2020

We construct a new type of agent-based model (ABM) that can simultaneously simulate land-use changes at multiple distant places (namely TeleABM, telecoupled agent-based model). We use soybean trade between Brazil and China as an example, where Brazil is the sending system and China is the receiving system because they are the world’s largest soybean exporter and importer respectively. We select one representative county in each country to calibrate and validate the model with spatio-temporal analysis of historical land-use changes and the empirical analysis of household survey data. The whole model is programmed on RePast Simphony. The most unique features of TeleABM are that it can simulate a telecoupled system and the flows between sending and receiving systems in this telecoupled system.

Under development.

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.