H Parunak Member since: Tuesday, June 20, 2017

Ph.D., Near Eastern Languages and Civilizations, Harvard, MS, Computer & Communication Sciences, Univ of Michigan, AB, Physics, Princeton University

Applications of agent-based modeling and complexity theory to real-world problems. I am particular interested in stigmergic polyagents, their relation to the path integral formalization of quantum physics, and their application to combinatorially explosive problems, but also work extensively in modeling social systems.

Chairi Kiourt Member since: Wednesday, March 28, 2018

BSc in Electrical Engineering, MSc in System Engineering and Management in the specialty area: A. Information and Communication Systems Management, PhD in n Artificial Intelligence and Software Engineering

Dr. Chairi Kiourt is a research associate with the ATHENA - Research and Innovation Centre in Information, Communication and Knowledge Technologies - Xanthi’s Division, multimedia department since 2014. Also, as of December 2017, heis PostDoctoral researcher with the Hellenic Open University, School of Science and Technology, and as of 2018, visiting Lecturer at the Department of Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, Greece.
In 2003, he received his BSc degree in Electrical Engineering from the Electrical Engineering Department of the Eastern Macedonia and Thrace Institute of Technology, Greece. He also received an M.Sc. in System Engineering and Management in the specialty area: A. Information and Communication Systems Management from the Democritus University of Thrace, Greece. In 2017, received his PhD in Artificial Intelligence and Software Engineering from the Hellenic Open University. He has participated in several national and European research programs and co- authored to the writing of several scientific publications in international peer-reviewed journals and conferences with judges in the fields of collective artificial intelligence, multi-agent systems, reinforcement learning agents, virtual worlds, virtual museums and gamification.

Game playing multi-agent systems, reinforcement learning, colelctive artificial intelligence, distributed computing systems, virtual worlds, gamification

Manuel Castañón-Puga Member since: Wednesday, October 16, 2019 Full Member

Ph.D. Computer Science, Universidad Autónoma de Baja California, México., MSC Computer Science, Tecnológico Nacional de México, México., ENG Industrial, Tecnológico Nacional de México, México.

I´m a full Professor at the Universidad Autónoma de Baja California in Mexico. I teach computer sciences and software engineering in graduate and undergraduate academic programs.

  • Computational science
  • Computational social science
  • Social-inspired ICT
  • Social computation
  • Agents technology
  • Computational intelligence and hybrid-intelligent agents
  • Complexity and complex systems
  • Multi-agent systems
  • Computational modeling
  • Context-oriented programming
  • Knowledge Management
  • Software engineering

Forrest Stonedahl Member since: Friday, January 20, 2012 Full Member Reviewer

Masters in Computer Science at Northwestern University, PhD in Computer Science at Northwestern University

My primary research interests lie at the intersection of two fields: evolutionary computation and multi-agent systems. I am specifically interested in how evolutionary search algorithms can be used to help people understand and analyze agent-based models of complex systems (e.g., flocking birds, traffic jams, or how information diffuses across social networks). My secondary research interests broadly span the areas of artificial life, multi-agent robotics, cognitive/learning science, design of multi-agent modeling environments. I enjoy interdisciplinary research, and in pursuit of the aforementioned topics, I have been involved in application areas from archeology to zoology, from linguistics to marketing, and from urban growth patterns to materials science. I am also very interested in creative approaches to computer science and complex systems education, and have published work on the use of multi-agent simulation as a vehicle for introducing students to computer science.

It is my philosophy that theoretical research should be inspired by real-world problems, and conversely, that theoretical results should inform and enhance practice in the field. Accordingly, I view tool building as a vital practice that is complementary to theoretical and methodological research. Throughout my own work I have contributed to the research community by developing several practical software tools, including BehaviorSearch (

Jiaqi Ge Member since: Tuesday, April 17, 2018 Full Member

I am a University Academic Fellow (UAF) in the School of Geography at the University of Leeds. My research areas are agent-based modelling, decision making in complex systems, AI and multi-agent systems, urban analytics and housing markets. I obtained PhD in Economics from Iowa State University under supervisor Prof. Leigh Tesfatsion in 2014. I worked as a researcher at the James Hutton Institute in Aberdeen, Scotland between 2014 and 2019. I joined the University of Leeds as a UAF of Urban Analytics in 2019. I am originally from Shanghai, China.

My main research areas are agent-based modelling, urban analytics and complex decision making enabled by AI. I am interested in the bottom-up transition of complex urban systems under major socio-economic and environmental shocks, such as climate change and the fourth industrial revolution. I want to understand how cities as self-organised complex systems respond to external shocks and evolve under a constantly changing environment. In the past, I have looked at various aspects of urban systems, including the housing market, the labour market, transport and energy system. I am also interested in decision making in complex systems. For example, I have studied the decision to become a vegetarian/vegan under social influence. I have also looked at global food trade in a complex trade network and the resulting food and nutrition security. Recently, I am interested in applying AI algorithms especially reinforcement learning in multi-agent systems, including applications of AI in urban adaptation to climate change, housing market dynamics and criminal behaviour in an urban system.

Ismael Chaile Member since: Wednesday, December 11, 2013 Full Member Reviewer

Ph.D. with research line in Multi-agent systems and Distributed systems (robots, IoT), Master In Science in Micro and Nanoelectronic, Master in General Direcction and Strategic Planning, Electronic Engineer

I have been researching in synchronization between agent-based-models (ABM) and multi robot systems used in logistic and manufacturing. I use Netlogo as ABM.
I develop and agile methodology to use the same ABM as supervisory control and data aquisition (SCADA). The framework works fine and I test it in two SCADAs, which you can see in my youtube channel (

Bruno Bonté Member since: Monday, February 13, 2017 Full Member

PhD in Computer Science applied to Modelling and Simulation, University of Montpellier 2, Master degree in Computer Science applied to Artificial Intelligence and Decision in Paris 6 University of Pierre and Marie Curry

Master Degree

I discovered at the same time Agent-Based Modeling method and Companion Modelling approach during my master degrees (engeenering and artificial intelligence and decision) internship at CIRAD in 2005 and 2006 where I had the opportunity to participate as a modeller to a ComMod process (Farolfi et al., 2010).


Then, during my PhD in computer Science applied to Modeling and Simulation, I learned the Theory of Modeling and Simulation and the Discrete EVent System specification formalism and proposed a conceptual, formal and operational framework to evaluate simulation models based on the way models are used instead of their ability to reproduce the target system behavior (Bonté et al., 2012). Applied to the surveillance of Epidemics, this work was rather theoritical but very educative and structuring to formulate my further models and research questions about modeling and simulation.


From 2011 to 2013, I worked on viability theory applied to forest management at the Compex System Lab of Irstea (now Inrae) and learned about the interest of agregated models for analytical results (Bonté et al, 2012; Mathias et al, 2015).


Since 2013, I’m working for Inrae at the joint The Joint Research Unit “Water Management, Actors, Territories” (UMR G-EAU) where I’m involved in highly engaging interdisciplinary researches such as:
- The Multi-plateforme International Summer School about Agent Based Modelling and Simulation (MISSABMS)
- The development of the CORMAS (COmmon Pool Resources Multi-Agents Systems) agent-based modeling and simulation Platform (Bommel et al., 2019)
- Impacts of the adaptation to global changes using computerised serious games (Bonté et al., 2019; Bonté et al. , 2021)
- The use of experimentation to study social behaviors (Bonté et al. 2019b)
- The impact of information systems in SES trajectories (Paget et al., 2019a)
- Adaptation and transformations of traditional water management and infrastructures systems (Idda et al., 2017)
- Situational multi-agent approaches for collective irrigation (Richard et al., 2019)
- Combining psyhcological and economical experiments to study relations bewteen common pool resources situations, economical behaviours and psychological attitudes.

My research is about modelling and simulation of complex systems. My work is to use, and participate to the development of, integrative tools at the formal level (based on the Discrete EVent System Specification (DEVS) formalism), at the conceptual level (based on integrative paradigms of different forms such as Multi-Agents Systems paradigm (MAS), SES framework or viability theory), and at the level of the use of modelling and simulation for collective decision making (based on the Companion Modelling approach (ComMod)). Since 2013 and my integration in the G-EAU mixt research units, my object of studies were focused on multi-scale social and ecological systems, applied to water resource management and adaptation of territories to global change and I added experimentation to my research interest, developping methods combining agent-based model and human subjects actions.

Sedar Olmez Member since: Wednesday, November 06, 2019 Full Member

MSci in Computer Science, MSc in Data Analytics and Society

Sedar is a PhD student at the University of Leeds, department of Geography. He graduated in Computer Science at King’s College London 2018. From a very early stage of his degree, he focused on artificial intelligence planning implementations on drones in a search and rescue domain, and this was his first formal attempt to study artificial intelligence. He participated in summer school at Boğaziçi University in Istanbul working on programming techniques to reduce execution time. During his final year, he concentrated on how argumentation theory with natural language processing can be used to optimise political influence. In the midst of completing his degree, he applied to Professor Alison Heppenstall’s research proposal focusing on data analytics and society, a joint endeavour with the Alan Turing Institute and the Economic and Social Research Council. From 2018 - 2023 he will be working on his PhD at the Alan Turing Institute and Leeds Institute for Data Analytics.

Sedar will be focusing on data analytics and smart cities, developing a programming library to try simulate how policies can impact a small world of autonomous intelligent agents to try deduce positive or negative impact in the long run. If the impact is positive and this is conveyed collectively taking into consideration the agent’s health, happiness and other social characteristics then the policy can be considered. Furthermore, he will work on agent based modelling to solve and provide faster solutions to economic and social elements of society, establishing applied and theoretical answers. Some other interests are:

  • Multi-agent systems
  • Intelligent agents
  • Natural language processing
  • Artificial intelligence planning
  • Machine learning
  • Neural networks
  • Genetic programming
  • Geocomputation
  • Argumentation theory
  • Smart cities
This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.